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Encoders for triangle mesh connectivity based on enumeration of vertex valences are among the
best reported to date. They are both simple to implement and report the best compressed file sizes for
a large corpus of test models. Additionally they have recently been shown to be near-optimal since
they realize the Tutte entropy bound for all planar triangulations.

In this paper we introduce a connectivity encoding method which extends these ideas to 2-
manifold meshes consisting of faces with arbitrary degree. The encoding algorithm exploits duality
by applying valence enumeration to both the primal and dual mesh in a symmetric fashion. It gen-
erates two sequences of symbols, vertex valences and face degrees, and encodes them separately
using two context-based arithmetic coders. This allows us to exploit vertex and/or face regularity if
present. When the mesh exhibits perfect face regularity (e.g., a pure triangle or quad mesh) and/or
perfect vertex regularity (valence six or four respectively) the corresponding bit rate vanishes to zero
asymptotically. For triangle meshes, our technique is equivalent to earlier valence driven approaches.

We report compression results for a corpus of standard meshes. In all cases we are able to show
coding gains over earlier coders, sometimes as large as 50%. Remarkably, we even slightly gain over
coders specialized to triangle or quad meshes. A theoretical analysis reveals that our approach is
near-optimal as we achieve the Tutte entropy bound for arbitrary planar graphs of 2 bits per edge in
the worst case.

Key Words: Compression Algorithms, Connectivity Encoding, Polygon Meshes, Curves
& Surfaces

1. INTRODUCTION

Encoding connectivity is an important component (next to geometry coding) of all
surface compression algorithms to date. This is true for single rate and progressive coders
and independent of the surface primitive,e.g., piecewise linear, NURBS, subdivision, or
multiresolution patches.

Much of the previous work in this area has been concerned with methods applicable to
triangle and quad meshes and has reached some sophistication both in terms of observed
and worst case performance. Comparatively little work has been dedicated to the harder
problem of connectivity encoding of 2-manifold graphs with arbitrary face degrees and
vertex valences (see the examples in Figure1).

Degree 5

Valence 4

FIG. 1 Examples of polygon meshes: (left) Beethoven mesh (2812 polygons, 2655 ver-
tices) - (right) Galleon mesh (2384 polygons, 2372 vertices). Close-up of a polygon mesh:
thevalenceof a vertex is the number of edges incident to this vertex, while thedegreeof a
face is the number of edges enclosing it. Both are in general unconstrained.

Goals and Contributions We propose an extension of the best known single-rate
triangle mesh connectivity encoding techniques—which are based on valence enumera-
tion [22, 1]—to the encoding of polygon meshes. Our strategy, which is based on encoding
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all vertex valencesand face degrees is near-optimal,i.e., it guarantees the bit rate bound
for a planar polygon graph established by Tutte [25] assuming a sub-linear number of split
symbols. The implementation of the algorithm is straightforward and its compression per-
formance improves upon all results reported earlier. The latter is true even for coders which
are specialized for triangle or quad meshes. Additionally we describe our context-based
entropy coder which further improves coding performance by exploiting common patterns
in meshes.

2. BACKGROUND AND OVERVIEW

2.1. Basic Definitions

The specification of a polygon mesh (Figure1(left)) consists of topologic quantities—
vertices, edges, and faces—and geometric quantities—attributes such as vertex positions,
face colors, etc. Our interest here is in efficient encoding of topology.Connectivityde-
scribes the incidences between elements and is implied by the topology. For example, two
vertices or two faces are adjacent if there exists an edge incident to both.

As depicted in Figure1(right), we will call the number of edges incident to a vertex
its valence, while the number of edges incident to a face will be denoted itsdegree. The
ring of a vertex is the ordered list of all its incident faces. Bit rates will be given in bits
per vertex (b/v), bits per edge (b/e), and bits per face (b/f) as required. The total number of
vertices, edges, and faces of a mesh will be denotedV , E, andF respectively.

2.2. Related Work

The related work on single rate coders falls into two major groups of algorithms: those
specific to triangle meshes, and those for more general polygon meshes. We review these
in turn.

Triangle Meshes Early work was motivated by the desire to render triangle meshes
quickly. Deering [5] proposed generalized triangle strips coupled with a vertex cache con-
suming on average 10 b/v. Bar-Yehuda and Gotsman [2] provided a theoretical study
of the cache/compression tradeoff. Speed was also a main concern for Chow [3] and
Gumhold [7]. Focusing more on absolute compression ratios, Taubin and co-workers de-
signed the “topological surgery” scheme [20, 21] which is capable of adapting to connec-
tivity regularity, resulting in 1 b/v for very regular meshes and 4 b/v on average otherwise.

Subsequently, Rossignac introduced EdgeBreaker [16], a better and simpler traversal
technique focusing on edges and introducing the concept of active gate. The mesh is tra-
versed by moving to the incident face across an active gate, followed by moving the active
gate to the new face. This algorithm has an upper bound of 4 b/v for triangle meshes. A
number of improvements to the algorithm [18, 19, 9, 17] and its theoretic bounds [12, 19, 6]
have followed.

In 1998 Touma and Gotsman [22] pioneered a novel vertex-based traversal scheme
that provides a natural adaptation to triangle mesh regularity through entropy coding. In
contrast to all previous methods, the traversal results inV rather thanF tokens, decreasing
the bit rate to 2 b/v on average and vanishing to zero for regular meshes. Alliez and
Desbrun [1] recently explained the excellent performance of such algorithms by analyzing
the entropy of the list of all valences and showing that it is optimal. There are however
exceptional symbols (splits) for which no non-trivial bound is yet known (hence the claim
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of “near”-optimality). As a practical solution they proposed an adaptive traversal control
heuristic which reduces the number of splits to get closer to the optimal bit rate.

Arbitrary Polygon Meshes Given that a polygon mesh with the same number of ver-
tices contains less edges than a triangle mesh it should be possible to encode it with fewer
bits. However, initial attempts to compress general graphs [23, 11] led to rates of around
9 b/v. These methods are based on building interlocking spanning trees for vertices and
faces. Consequently, the number of edges becomes the natural measure of planar graph
size, in turn governing the encoding size. Chuanget al. [4] later described a more com-
pact encoding via canonical ordering and multiple parentheses. They state that any simple
3-connected plane graph can be encoded using at most1.5 log2(3)E + 3 ' 2.377 bits per
edge.

Li and Kuo [15] pioneered a dual approach that traverses the edges of the dual mesh
and outputs a variable length sequence of symbols based on the type of a visited edge. The
final sequence is then encoded using a context based entropy encoder.

Isenburg and Snoeyink encoded the connectivity of polygon meshes along with their
properties in a method calledFace Fixer[10]. This algorithm is gate-based and generalizes
the EdgeBreaker algorithm while adding the notion of a face degree. A complete traversal
of the mesh is organized through successive gate labeling along an active boundary loop.
As in [22, 16] both the encoder and decoder need a stack of boundary loops. Seven distinct
labels Fn, R, L, S, E, Hn and Mi,k,l are used in order to describe the way tofix faces or holes
together while traversing the current active gate. The labels Fn correspond to face degrees
and are limited to the range[3 − 5] thanks to an additional special symbol Fc. Since the
final sequence of symbols exhibits strong correlation the authors used an order-3 arithmetic
coder. Kinget al. [13] and Kronrod and Gotsman [14] also generalized the EdgeBreaker
method to arbitrary polygon meshes. For the former quad meshes are encoded with3 b/v
and for the latter quad meshes are encoded with3.5 b/v and quadrilateral meshes containing
a minority of triangles with4 b/v. However, none of these polygon mesh encoders come
close to the bit rates of any of the best, specialized encoders [22, 1] when applied to triangle
meshes.

2.3. Key Concept: Duality

In addition to the previous work analysis, we make the following observation. Con-
sider an arbitrary 2-manifold triangle graphM. Its dual graphM̃, in which faces are
represented as dual vertices and vertices become dual faces (see Figure2), should have
the same connectivity entropy: dualization neither adds nor removes information. The va-
lences ofM̃ are now all equal to3, while the face degrees take on the same values as the
vertex valences ofM. Since a list of all3s has zero entropy, just encoding the list of de-
grees ofM̃ would lead to the same bit rate as found for the valences ofM. Conversely, if
a polygon mesh has only valence-3 vertices, then its dual would be a triangle mesh. Hence
its entropy should be equal to the entropy of the list of its degrees.

The above observation leads us to the key concept of this paper: our compression
algorithm should bedual, in the sense that both a mesh and its dual get encoded with the
same number of bits. As a direct consequence, the encoding process should be symmetric
in the coding of valences and degrees. In fact, we will show in the Appendix that encoding
each separately realizes the enumeration bound of Tutte. A second direct consequence is
that the bit rate of a mesh should be measured in b/e, since the number of edges is the only
variable not changing during a graph dualization. However, for purposes of comparison
with earlier work we will report comparative results in b/v in Section4.
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FIG. 2 Left: a polygon mesh with highlighted faces of degree 3 and 5. Middle: the dual
mesh is built by placing one node in each original face and connecting them through each
edge incident to two original faces. Right: the dual mesh now contains corresponding
vertices of valence 3 and 5.

Note: While this paper was in review, we learned about a similar approach concurrently
developed in independent work by Isenburg [8]. It also exploits the idea of dual mesh
entropy and lends additional support to the usefulness of this approach. We refer the inter-
ested reader to [8] for additional details.

F6 - V4 - V4 - V4 - V4 - V4 - V4 F4 - V4 - V4 F4 - V4 - V5 F4 - V5 F3 -  V4 F4 - V4

F3 - V5 F4 - V4 F4 - V3 - V4 F4 - V5 F4 - V3 - V4 F4 - V5

FIG. 3 Example of a simple traversal sequence starting from a seed face. At the beginning,
the seed face degree is output along with the valence of all its vertices. The first vertex then
becomes active and the next face is traversed in counterclockwise order, resulting in one
face degree and two vertex valences output. The traversal keeps going until all the faces
and vertices have been visited.

2.4. Overview of our Approach

In this paper, we propose a unified and simple solution for connectivity encoding of
triangle, quad and polygon 2-manifold meshes with arbitrary topology and any number of
components or boundaries.

The basic technique underlying our algorithm is similar to most connectivity compres-
sion methods. A seed face is chosen and all its neighbors are traversed recursively until all
faces of the corresponding connected component are visited. A new seed face of the next
connected component is then chosen and the process continues. Every time the encoder
traverses the next element of the mesh, it outputs some symbol which uniquely identifies a
new state. From this stream of symbols, the decoder can reconstruct the mesh. Various en-
coding algorithms differ in the way they actually traverse a mesh and in the sets of symbols
used for identifying the encoder state.
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As we have seen in the previous work section, a generalization of the gate-based ap-
proach to arbitrary polygon meshes was suggested in [10]. In the present paper we propose
a generalization of the second, vertex-based approach. Because of the duality properties of
our approach, it may equivalently be viewed as a face-based approach. We use two sets of
symbols to encode vertex valences and face degrees. At any given moment both encoder
and decoder will know which type of symbol (face or vertex) they are dealing with. Con-
sequently, if the input mesh contains only faces of fixed degree (all triangles or all quads,
for example), the corresponding stream will be compressed to near zero b/f by an entropy
coder leaving only a vertex valence stream. Conversely, if the mesh has faces of varying
degrees, but all vertices have the same valence, we get a zero entropy vertex stream. Note
that the FaceFixer algorithm also uses face degrees, so it can take advantage of a mesh
with uniform face degrees, but not of one with uniform vertex valences. The shark model
exemplifies such a case (see Table2).

3. ENCODING ALGORITHM

In this section we give a complete, yet informal description of our algorithm, including
the data structures needed. Pseudo code giving exact details is included in the Appendix.
We also discuss the optimality of our approach, and show that encoding both the valence
and degree lists exactly matches the worst-case entropy for a planar graph as established
by Tutte [25].

Data Structures We maintain only vertex and face data structures explicitly. Vertices
store their valence and references to all incident faces in counterclockwise order. Similarly,
a face stores its degree and references to all incident vertices in counterclockwise order.
Vertices as well as faces go through a sequence of states:empty, active, andcomplete. At
any given time at most one face is active, but there may be multiple vertices active. These
are held in theactive vertex queue. When a face is processed—moved from empty to active
to complete states—all its vertices, which are not yet active, are activated through insertion
into the active vertex queue. Consequently, each active vertex has at least one complete
incident face. As soon as all the faces incident to a vertex have become complete, the vertex
changes its state to complete and is removed from the queue. Thus, the active vertex queue
represents theboundarybetween the part of the mesh which has already been traversed
and the part as yet to be visited.

3.1. Traversal Strategy

Initialization step We start the mesh traversal by picking an initial seed face. The
encoder outputs the degree of this face, followed by the valences of all the vertices incident
to this face in counterclockwise order. These vertices are added to the queue. Conversely,
the decoder receives the seed face degree and creates a corresponding face. It then fills all
the slots for the incident vertices, moving them from the empty to active state,i.e., enters
them into its queue. In this way encoder and decoder maintain matching states.

Completing the verticesThe traversal continues by removing the highest priority ac-
tive vertex from the queue and making it thecurrentvertex. We will discuss heuristics for
queue priority assignment in Section3.3.

The algorithm proceeds counterclockwise around the active vertex, skipping all faces
which have already been completed. Recall that at least one face is completed and at least
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one incident face is still empty, otherwise the vertex would not be in the active queue.
When the encoder detects an empty face—empty slot in the incident face data structure
associated with the current vertex—it proceeds through the following steps:

• the face is activated, it becomes the “current” face, and its degree is output;

• the current face is added to the appropriate slot in the incident face data structures of
the current vertex as well as any other active vertices which are incident to current face;

• any remaining empty vertices of the current face are activated and their valences output
in counterclockwise order;

• the current face is complete and removed from processing.

Notice that we alternately turn around vertices and faces (see Figure3). The active vertex
and the subsequently picked active face can be considered as successivepivots, extending
the traversal proposed in [1].

The decoder follows a symmetric procedure, ensuring the same ultimate traversal.
When it finds the first empty face slot in the currently active vertex, it proceeds as fol-
lows:

• read in a face degree and create the face, moving it from state “empty” to “active,”
calling it the “current” face;

• add the current face to the appropriate slot in the active vertex and any other active
vertices it is incident on (while the encoder could read off this information the decoder
must deduce it and we detail this procedure below);

• read the valences of the remaining empty vertices incident on the current face, activating
them through insertion into the active vertex queue;

• move the current face to the complete state.

Any vertices completed during the traversal of the current face are removed from the active
vertex queue. They no further belong to the boundary of the traversed region. After the
current face is processed the algorithm proceeds to the next face in the currently active
vertex until it is complete. Subsequently a new active vertex is taken from the queue and
the process repeats until the active vertex queue is empty. If there are some connected
components remaining, a new seed face is chosen on it and another component traversal
starts.

Details of face insertion The procedure that inserts the current face in active vertices
other than the current vertex is the only non-trivial operation during the traversal. From
the current vertex, we “walk” along the boundary of the visited region in both directions
to find which vertices are incident to the current face. The corresponding active vertices
will get the current face inserted in their corresponding slots. Since the current face was
created to fill the first empty slot in the current vertex we know it shares an edge with the
non-empty face slot immediately preceding it in the current vertex (see Figure4 for an
example). For convenience, let us call the shared edge between these two faces the current
edge. It follows that the current face should also be inserted in the active vertex associated
with the other end point of the current edge. Further it is known into which face slot in that
vertex the current face should be inserted. Iteratively we check whether the preceding face
slot in that ring is non-empty. If it is, we update the current edge accordingly and continue
as long as we can update the current edge. Once stopped we attempt the same walk in the
other direction from the active vertex. Notice that both the encoder and the decoder use the
same procedure to find the relevant vertices. Hence the decoder will be able to interpret
the subsequent valence transmission(s) with respect to the correct slots in the current face.
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FIG. 4 Insertion of a face and connection to the existing mesh. First we add the face to the
active ring. Next we travel along the boundary adding the new face to all adjacent vertices,
first in one direction then in the other. Finally, we insert the remaining (white) vertex based
on the valence code received.

Boundaries We deal with boundaries by inserting dummy faces to close every hole of
the mesh. The traversal algorithm remains unchanged, and all dummy faces are processed
in the same way as regular faces. The only modification is that the valences of dummy
faces are encoded using a different symbol so that the decoder can remove them later.

3.2. Splits

Recall that when the decoder creates the current face, all the vertices which can be
obtained from neighboring faces are already active. Alas, it is also possible that the current
face is incident to an active vertex, without this fact being deducible (see Figure5). We
call such a situation asplit since locally a single component of the boundary of the visited
region is split into two sub-boundaries when this situation occurs. The other possible
case is that the unreachable vertex belongs to a different boundary component. Such a
situation is usually referred to as a merge [22, 1]. Since we only keep a single queue of all
boundary vertices without distinguishing between different components, we do not make
a distinction between boundary splits and merges. Instead, we refer to both cases as splits,
simplifying the implementation.

Splits must happen when encoding non-zero genus models, since a regular traversal
always creates regions topologically equivalent to disks. Unfortunately, splits may also
occur for models of genus zero. We will see that the traversal order can be optimized to
minimize the number of splits.

If the encoder detects a split situation,i.e., it is about to activate a vertex which is
already active, it outputs a specialsplit symbol instead of the valence. This symbol is
followed by the current index of the split vertex in the active vertex queue. The index of
the current face in the list of faces incident to the split vertex is also output in order to fully
specify the split.

3.3. Heuristic for Traversal Order

Since the split operations are potentially expensive we want to minimize them. Follow-
ing the approach detailed in [1], we optimize the traversal order by managing the queue
priorities based on a heuristic. The priority of each vertex in the queue is inversely propor-
tional to its “incompleteness,”i.e., the number of empty face slots in a ring. This heuristic
favors completion of “almost complete” rings. Such rings are usually located in concave
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FIG. 5 The black vertex demonstrates thesplit situation. This vertex already exists in a
visited region, but the current (dashed) face cannot find it from its immediate neighbors.

sections of the boundary between the visited and non-visited parts of the mesh. Empiri-
cally, these are the main source of splits. Hence, the heuristic tends to avoid the formation
of such regions, decreasing the number of splits. A number of other heuristics of higher
complexity were also suggested in [1] and could be used here to achieve potentially better
coding performance. To ensure synchronization, both encoder and decoder use the same
heuristic.

3.4. Entropy Coding

The output of the traversal algorithm just described consists of a stream of face degree
symbols and a stream of vertex valence symbols. These streams could be encoded by any
efficientcontext-basedarithmetic coder (AC). Each stream has its own set of context tables.
A simple coder can use just one context table per stream. Such a coder is appropriate if the
mesh is small or if the encoding stream has a very regular symbol pattern. In general, better
encoding results are achieved by using multiple contexts for each stream. Such contexts
allow to better exploit both correlations between streams, and between symbols within
each stream.

3.4.1. Symbol Definitions

We define 15 symbols for the face degree stream and 16 symbols for the vertex valence
stream. Symbols “3”-”15” correspond to actual valences or degrees. The symbol “2”
represents valence 2 in the vertex stream and theB (for boundary) symbol in the face
stream. The symbol “1” is anESCsymbol for encoding larger valences or degrees. Finally,
the symbol “0” is theSplit code in the vertex stream and is not used in the face stream.
B andESCsymbols are followed by the actual degree or valence number (offset, so 16 is
mapped to 0). TheSplit symbol requires the encoding two extra numbers: the index of
the split vertex in the active vertex queue and of the current face index in the split vertex.
We encode them with a uniform context on the interval[0..N − 1]. For the queue indexN
is the size of the queue at that moment. For the index of the current face in the split vertex
incident face list,N is taken to be the number of empty slots in the split vertex.

If, for a particular stream, only one context is used, the corresponding context table
is saved exactly in the file header. In the case when many contexts are used (see below),
it is too expensive to save exact tables. Instead, we save only the positions of the most
significant bit of all counters. These are used to initialize contexts with approximate distri-
butions. Tables are then updated by an adaptive arithmetic coder. The cost of encoding a
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non-empty table is 2-3 bytes on average compared to 10-12 bytes for encoding of an exact
table.

3.4.2. Our Statistical Model

The face and vertex streams are encoded using multiple contexts. The appropriate con-
text is chosen based on already-known information about neighboring faces and vertices.
This approach is different from using a higher-order arithmetic coder which uses a number
of previously processed symbols to define the new context. The latter approach is less ad-
vantageous, since some of the previous symbols may correspond to faces or vertices which
are not relevant to the current symbol.

Face degrees The context for a face degree symbolF is determined by the degree of
the previous faceFp in the same active ring and the sumVav of valences of the vertices on
the edge between the current and the previous faces.

In particular, we separately consider most common degrees 3, 4, 5. IfFp has some
other degree we encode the symbolF with a default context. The same default context is
used when there is no previous face. We use three different contexts for each of degrees 3
and 4 and just one context for a less common degree 5. We decide between three possible
contexts depending onVav < Vcrit, Vav = Vcrit, Vav > Vcrit whereVcrit = 12 if Fp is a
triangle andVcrit = 8 if Fp is a quad.

Vertex valences are encoded with 8 contexts in a similar way to face degrees. The
context for the vertexV is determined by the degree of the faceF which contains this
vertex and the sumVav of valences of all know vertices in that face.

We use three contexts ifF is a triangle or quad, one context for degree 5 and one
context for other degrees. IfF is a triangle or a quad we distinguish between three possible
contexts depending onVav < Nv · Vcrit, Vav = Nv · Vcrit, or Vav > Nv · Vcrit, whereNv

is a number of known vertices andVcrit is 6 for triangles and 4 for quads.

Discussion The motivation for using such contexts is that the average valence of ver-
tices in quad and triangle regions are different. Therefore, there is a correlation between the
vertex or face symbol to encode and the average valence of known neighboring vertices.

We have found the above heuristics to generally improve the coding of meshes. We
have experimented our technique on the large SNHC database, and on average, a gain of
13% is observed when we use our simple statistical model over a direct encoding (slightly
worse bitrates are obtained only for small meshes). We also show in Table1 that using only
contexts based on valences or degrees is consistently worse than our mixed strategy on this
3D database. Although one could adjust this strategy to perform better on a given corpus
of meshes, our choice seems a good compromise for the typical meshes used in graphics.

3.5. Optimality

Alliez and Desbrun [1] have recently proven that the list of valences of a triangle mesh
is an exact entropy measure of connectivity. The worst case scenario fits the theoretical
results of Tutte [24] of log2(256/27) ≈ 3.24 bits per vertex, while regularity in valence
leads to almost zero entropy. In AppendixA we prove, using a similar approach, that the
entropy of the two lists of valences and degrees also matches the counting results of Tutte
for general, 3-connected graphs [25]. This proves the “near-optimality” of our approach:
under the assumption that only a sub-linear number of splits is produced during encoding,
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Bytes using VF (%) using V (%) using F (%)
1–100 -3.88 -15.52 -3.08
100–200 6.99 -4.24 5.85
200–400 15.20 -0.97 12.88
400–1000 20.61 0.05 18.86
1k–5k 19.95 1.67 17.57
5k–10k 21.33 5.13 15.94
10k–85k 19.82 7.68 11.77
All 13.01 -2.76 11.15

TABLE 1
Compression results for the 1296 manifold models from the SNHC database. The results
were sorted by the size of the compressed files and averaged by groups. The first column

shows the group. The second column shows the relative improvement when using
multiple contexts. Third and forth column show improvement when using multiple

contextsonlyon vertex, and face streams respectively.

the bit rate of our encoder is asymptotically optimal. This assumption of a small number of
splits holds for all the meshes we tried. Note though that it is possible to produce “patho-
logical” meshes which will cause a linear number of splits to occur under all heuristics we
have considered.

4. RESULTS

We begin with a performance comparison of our algorithm and the FaceFixer coder.
Table2 shows the results of compression for a set of standard models (see Figure6) both in
total bytes and b/v. The average improvement is approximately 20%. The most significant
improvement is achieved for the shark model: most of the vertices in this model have the
same valence. Because of the separation of vertex and face information in our coder, the
vertex information was encoded at practically no cost, leading to a factor2 improvement
in bit rate performance. In Tables3 and4, we also compare our polygon mesh coder to the
Touma-Gotsman (TG) and Alliez-Desbrun (AD) triangle mesh coders on sets of irregular
and semi-regular triangle meshes. As expected, all these algorithms exhibit essentially
similar performance.

Lastly, we compressed the connectivity of adaptively tessellated Catmull-Clark sur-
faces (Table5). These meshes contain mostly quads, but also have a number of “con-
forming” triangles in the transition regions between different levels of tessellation (see
Figure6).

These tables all indicate the better bit rates for polygon meshes, and similar or slightly
better results for triangle meshes over the best available coders known as of today. This
confirms the notion of near-optimality of our algorithm as proven by our simple entropy
analysis. There is however no doubt that it is possible to design better encoders for a
specific corpus of meshes by adapting or fine-tuning the statistical modeling we imple-
mented. Our current implementation processes all tested meshes in less than two seconds
on a PIII 933MHz computer. The set of models we used for comparison can be found at
http://www.multires.caltech.edu/software/ircomp
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model V splits size(B) size(b/v) FF(b/v) gain
al 3618 10 1128 2.50 2.926 15%
beethoven 2655 18 763 2.30 2.890 20%
cessna 3745 42 1204 2.57 2.841 9%
cow 2904 11 638 1.76 2.213 21%
cupie 2984 19 665 1.78 2.307 23%
galleon 2373 17 621 2.09 2.595 19%
sandal 2636 50 749 2.27 2.602 13%
shark 2560 19 265 0.83 1.670 50%
teapot 1189 7 182 1.22 1.669 27%
tommygun 4171 47 1199 2.30 2.611 12%
triceratops 2832 45 455 1.28 2.115 39%

TABLE 2
Comparison between the FaceFixer algorithm and our approach. The second column

shows the number of vertices in thepolygon mesh; the third column shows the number of
splits, the fourth and fifth columns show the size of the compressed file in total bytes and
b/v; the sixth column shows the performance of FaceFixer while the last column shows

the improvement.

model V TG(b/v) AD(b/v) our(b/v) splits
armadillo 172729 1.83 1.78 1.65 28
bunny 34835 1.29 1.20 1.07 2
david 101643 2.53 2.43 2.42 330
dinosaur 14070 2.40 2.27 2.25 17
fandisk 6475 1.07 1.00 0.93 2
feline 49864 2.38 2.28 2.20 24
horse 48485 1.51 1.42 1.33 6
molecule 10028 1.91 1.82 1.80 3
rabbit 67039 1.66 1.56 1.47 0
venus 50002 2.20 2.12 2.05 1

TABLE 3
The table compares Touma-Gotsman (TG), Alliez-Desbrun (AD), and our compression

scheme on a number ofirregular triangle meshes. The second column shows the
number of vertices in the models and the last column shows the number of splits. The

coder performances are expressed in b/v.

5. CONCLUSION AND FUTURE WORK

We have presented a unified technique for connectivity compression of 2-manifold
polygon meshes. It performs near-optimally on all major types of meshes encountered in
practice: triangle, quad and general polygon meshes. Our algorithm exploits duality by
encoding separately the list of vertex valences and the list of face degrees. Vertex and/or
face regularity can therefore be fully exploited. Additionally, we show that encoding these
two lists is in perfect agreement with previous theoretical analyses [24, 25], and leads to a
worst-case of2 b/e on arbitrary meshes, and of3.24 b/v for triangulations. We also pro-
vide a statistical model for the entropy coding that improves compression ratios further
by exploiting local regularities in valence and degree distributions. These are found quite
commonly in all the meshes we examined. Our implementation demonstrates the com-
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model V TG(b/v) AD(b/v) our(b/v) splits
armadillo 106011 0.020 0.018 0.015 7
bunny 118206 0.019 0.015 0.014 2
dinosaur 129026 0.018 0.015 0.013 4
fandisk 18178 0.061 0.043 0.043 2
feline 258046 0.017 0.013 0.012 17
horse 182274 0.012 0.012 0.010 5
molecule 54272 0.018 0.015 0.013 2
rabbit 107522 0.015 0.013 0.011 0
skull 131074 0.001 0.003 0.001 0
venus 198658 0.012 0.012 0.009 0

TABLE 4
This table compares Touma-Gotsman (TG), Alliez-Desbrun (AD), and our coder on a
number ofsemi-regular triangle meshes. The second column shows the number of

vertices in the models and the last column shows the number of splits. The coder
performances are expressed in b/v.

model V size(B) size (b/v) splits
armadillo 10kV 10276 2350 1.83 37
armadillo 20kV 20076 4509 1.80 33
buddha 10kV 10837 2322 1.71 25
buddha 20kV 19997 4498 1.80 37
david 10kV 10350 2487 1.92 4
david 20kV 20011 4651 1.86 10

TABLE 5
The table shows performance of our coder on largeadaptively tessellated

Catmull-Clark surfaces. Because of the adaptivity, the meshes contain triangles at the
interfaces between regions of different tessellation depth. The second column shows the

number of vertices in the model and the last column shows the number of splits. The
coder performance is expressed in both total bytes and b/v.

pression gains of this polygon mesh compression technique over all previously published
techniques, on all tested meshes. The very same algorithm even outperforms most of the
previous encoders which were specifically tuned to triangle or quad meshes when applied
to such specialized inputs.

Possible future work includes the generalization of this approach to volume meshes,
including tetrahedron or hexahedron meshes. This would require vertex, faceand edge
valences to be encoded. An extension to non-manifold meshes would also be very relevant
for practical applications. Finally we hope to build more sophisticated statistical models of
valence and degree distributions based on larger corpora of meshes, to further improve the
compression performance.
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FIG. 6 Polygon and mixed triangle/quad meshes used in our table of results.
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APPENDIX A: ENTROPY ANALYSIS

Consider a 2-manifold polygon meshM with V vertices,E edges, andF faces, and
the following standard assumptions on the mesh:

• it has no boundary,i.e., every edge has two incident faces;

• it is topologically equivalent to a sphere,i.e., has genus zero;

• it has only one connected component.

For the sake of clarity, we also definer to be the ratio between the number of faces and
the number of vertices,r = F/V . Typical examples forr are2, 1 and0.5 for triangle,
quad and hex meshes respectively (see Figure7). If a mesh has no digon, no stick and no
isolated vertex,r lies in the range[0.5, 2].

FIG. 7 Left: a triangle mesh (r = 2), average vertex valence6. Middle: a quad mesh
(r = 1), average vertex valence4. Right: a hex mesh (r = 0.5), vertex valence3.

Entropy of a code sequence

The entropy is a measure of the information content of a series of symbols. More
precisely, it denotes the minimalnumber of bits per symbolrequired for lossless encoding
of the sequence. It is both a function of the numberN of distinct symbols and their
respectiveprobabilitiespi

entropy=
N∑

i=1

pi log2

1
pi

.

The final bit rate of a connectivity encoding technique is therefore intricately related to the
statistical distribution of the symbols used.

Next, we review the constraints on the distribution of vertex valences and face degrees
in an arbitrary polygon mesh.

Euler formula

Euler’s formula for a 2-manifold polygon mesh of genus zero, one connected compo-
nent and no boundary states:

F + V − E = 2. (1)

Additional relations between the number of edges and valences, respectively degrees, are:

N∑
i=3

vi = 2E and
M∑

j=3

fj = 2E.

These simply state that summing all valences, respectively degrees, counts each edge twice.
These sums may be rewritten by summing over all possible valences, respectively degrees,
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the number of times each occurs. The latter is most conveniently expressed through the
use of probabilities of occurrence of each valence and degree. Let the former be given by
pi for i = 3, . . . ,∞ and the latter byqj for j = 3, . . . ,∞ to give:

V
∞∑

i=3

i pi = 2E and F
∞∑

j=3

j qj = 2E. (2)

Solving Eq.1 for E, substituting into Eqs.2, dividing byV andF respectively we arrive
at the following expressions for the average vertex valences and face degrees:

v̄ =
∞∑

i=3

i pi =
2E

V
= 2(r + 1),

f̄ =
∞∑

j=3

j qj =
2E

F
= 2(

1
r

+ 1), (3)

where the last equality holds in the limit asV respectivelyF go to infinity. Note that these
equations confirm the canonical cases shown in Figure7.

Worst asymptotic bit rate vs. Tutte’s enumeration

The algorithm described in this paper encodes both the vertex valence list and the face
degree list. The entropy of the valences is:

e1 =
∞∑

i=3

pi log2(1/pi) [b/v],

while that for the degrees is:

e2 =
∞∑

j=3

qj log2(1/qj) [b/f] .

Multiplying through by the ratiosV/E andF/E found in Eq.3 one can express thetotal
bit ratee, i.e., the sum of both bit rates, in units of b/e:

e =
1

r + 1
e1 +

r

r + 1
e2

=

∞∑
i=3

pi log2(1/pi) + r

∞∑
j=3

qj log2(1/qj)

r + 1
. (4)

Our goal in the remainder of this section is to find the maximum possible entropye
for arbitrary meshes withr ∈ [0.5, 2]. Maximizing Eq.4 each as a function ofpi andqj

without any additional constraints would lead to both a maximum number of distinct face
degrees and vertex valences, each with an equal probability of occurrence. However, such
a configuration of valences and degrees is incompatible with Euler’s formula. This leads
us to a constrained maximization problem.

There are a total of four constraints on thepi andqj . Two are given by Eq.3 with two
additional constraints simply stating that thepi andqj have to sum to one:

∞∑
i=3

pi = 1 and
∞∑

j=3

qj = 1. (5)
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Incorporating these constraints through the use of Lagrange multipliers as was done in [1],
the maximum of Eq.4 can be achieved by choosingpi andqj to maximize:

f(p3, p4, . . . , λp, µp, q3, q4, . . . , λq, µq) =

1
r + 1

∞∑
3

pi log2

1
pi

+ λp(
∞∑
3

pi − 1) + µp(
∞∑
3

i pi − 2(r + 1))+

r

r + 1

∞∑
3

qj log2

1
qj

+ λq(
∞∑
3

qj − 1) + µq(
∞∑
3

i qj − 2(
1
r

+ 1)),

whereλp, µp, λq andµq are the four Lagrange multipliers. Equating all derivatives off
with respect to each of the unknown variablespi andqj to zero, we find thatpi andqj must
follow an exponential decay:

pi = αv β−i
v and qj = αf β−j

f .

To determine the coefficientsαv, αf , βv, andβf , we rewrite the constraints given by Eqs.5
and3 as:

∞∑
i=3

pi = αv

∞∑
3

β−i
v = 1

∞∑
j=3

qj = αf

∞∑
3

β−j
f = 1

∞∑
i=3

i pi = αv

∞∑
3

i β−i
v = 2(1 + r)

∞∑
j=3

j qj = αf

∞∑
3

j β−j
f = 2(

1
r

+ 1).

Using the identities (valid forβ > 1):

∞∑
i=3

β−i =
β−2

β − 1
∞∑

i=3

i β−i =
3β − 2

β2(β − 1)2
,

we find the following unique solution:

αv =
4 r2

(2 r − 1)3
, and βv =

2 r

2 r − 1
,

αf =
4 r

(2− r)3
, and βf =

2
2− r

.

Substituting these solutions leads to the worst-case bit rate functione(r) plotted in Fig-
ure8.

As seen in the figure, and as easily proven by studying the derivatives of the entropy
curve, the maximum bit rate is reached forr = 1 :

e(1) = − ln(4)
ln(2)

+ 4 = 2 [b/e].
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FIG. 8 Plot of the worst-case bit ratee(r) in units of b/e.

This coincides exactly with theminimumnumber of bits needed to encode each edge of
an arbitrary planar graph found by Tutte [25] through enumeration of all possible genus-0
3-connected graphs. The fact that we meet the exact entropy of general polygon meshes
validates a posteriori our approach of encoding independently the valence and degree lists.
This, by no means, should be confused with a claim of optimality for a given corpus of
meshes: it simply means that over the whole set of polygon meshes, one can not hope
to devise a connectivity algorithm requiring a smaller maximum number of bits. As we
mentioned in Section4, better algorithms could be designed for a restricted set of meshes.

Notice thate(2) = 1.08 b/e ' 3.24 b/v for a triangle mesh, exhibiting the upper
bound oflog2(256/27) b/v proven by Tutte from the enumeration of planar triangula-
tions [24]. The maximum entropy is the same whenr = 0.5, confirming our remark that
a mesh and its dual should have the same entropy. Meshes for whichr = 0.5 are duals
of triangle meshes. More generally, we observe thate(r) = e(1/r), i.e., primal and dual
meshes have equal entropy.

APPENDIX B: PSEUDO-CODE OF OUR TRAVERSAL ALGORITHM

In the following pseudo-code we use a Face class and a Vertex class such as each face
has access to its degree and to an array of its vertices, and each vertex has access to its
valence and an array of its adjacent faces. We further assume that any access to a vertex
(resp., face) array is donemodulothe degree (resp., the valence), to avoid unnecessary
index testing. “ActiveSet” is a container for all active vertices. Finally, the following
functions have to be implemented in the decoder and the encoder to perform actual I/O
operations (read for the decoder, write for the encoder):

Face*ioFace(v, j) – i/o a degree. Returns a face
Face*ioFaceInit() – likewise, but just to bootstrap. Returns 0 if Done
Vertex* ioVertex(f,i) – i/o a valence or a Split code. Returns Vertex or 0 (if split)
int ioSplitVertex(f,i) – i/o a vertex index in ActiveSet,
int ioSplitPos(f,i); – i/o a face position in a vertex array

// Entry point
void run ( ) {

while ( runComponent() ! = Done ) ;
}
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// Process one connected component
Result runComponent( ) {

if ( ! init () ) return Done;
while ( v=ActiveSet.next() ) {

completeV(v);
ActiveSet.remove(v);

}
return Continue;

}

// Initialization, returns false if the whole mesh is processed
bool init ( ) {

if ( ! f = ioFaceInit() )
return false; //all faces are processed

for ( i = 0 ; i < f.degree; i++ )
activateV(f, i); // process all vertices

return true;
}

// Completes processing of the current vertex.
// in: v has valid valence and v.f[0] fields
// out: all fields of v are valid
void completeV( v ) {

while ( j = v.firstEmpty() ) { // while there is an empty slot
f = activateF(v, j); // create a face
completeF(f, j); // process its vertices

}
}

// Consistency of a face-vertex state (“FV”) means:∀ i: f.v[i] == v =⇒ ∃ j: v.f[j] == f
// “Linked edge” consistency means:
// ∀ j: (v.f[j] ! = 0 && v.f[j-1] ! = 0) =⇒ ∃ i1, i2: v.f[j].v[i1+1] == v.f[j-1].v[i2-1]

// Create a vertex
// in: a face and vertex’s position i
// out: an active vertex (valence and v.f[0] are valid), f is “FV” consistent with v
void activateV( f, i ) {

v = ioVertex(f, i); // i/o valence (creates a vertex) or Split
if ( v ) { // if a new active vertex

f.v[i] = v; v.f[0] = f;
ActiveSet.add(v);

} else{ // vertex already exists: Split
v = ioSplitVertex(f, i); // i/o v’s index in ActiveSet, returns v
j = ioSplitPos(f, i); // i/o position of f in v
f.v[i] = v;
addFaceToVertex(f, i, v, j);

}
return v;

}
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// Creates a face
// in: vertex v and face’s position j
// out: active face (degree and f.v[0] are valid), f is “FV” consistent with v
void activateF( v, j ) {

f = ioFace(v,j); // i/o degree, create face
f.v[0] = v;
addFaceToVertex(f, 0, v, j);

}

// Processes all vertices of a face f
// in: an active face f (degree and f.v[0] are valid), and face’s position j> 0, (v.f[j-1] ! = 0)
// out: all fields of f are valid, “FV” is enforced
void completeF( f, j ) {

vp = f.v[0]; jp = j; i = 1;
while ( vn = f.v[i] ) { // forces “FV” in “next” direction

jn = vn.find( vp.f[jp-1] )-1;
vn.addFaceToVertex(f, i, vn, jn);
vp = vn; jp = jn; i++;
if ( i >= f.degree) return ;

}
ilast = i;
vp = f.v[0]; jp = j; i = f.degree-1;
while ( vn = f.v[i] ) { // forces “FV” in “prev” direction

jn = vn.find( vp.f[jp+1] )+1;
addFaceToVertex(f, i, vn, jn);
vp = vn; jp = jn; i- -;
if ( i <= ilast ) return ;

}
for ( ; ilast< i; ilast++ ) // process unresolved vertices

activateV(f,ilast);
}

// Adds face f to a vertex v
// in: face f and vertex v, f.v[i] == v, an index j
// out:v.f[j] == f, “link edge” is enforced on v
void addFaceToVertex( f, i, v, j ) {

v.f[j] = f; // add a face
if ( fp = v.f[j-1] ) { // if prev face exist “link edge”

ip = fp.find(v);
if ( ! f.v[i+1] )

f.v[i+1] = fp.v[ip-1];
}
if ( fn = v.f[j+1] ) { // if next face exist “link edge”

in = fn.find(v);
if ( ! f.v[i-1] )

f.v[i-1] = fn.v[in+1];
}

}
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