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Abstract

We introduce a new method for computing conformal transfor-
mations of triangle meshes in R3. Conformal maps are desirable
in digital geometry processing because they do not exhibit shear,
and therefore preserve texture fidelity as well as the quality of
the mesh itself. Traditional discretizations consider maps into the
complex plane, which are useful only for problems such as sur-
face parameterization and planar shape deformation where the
target surface is flat. We instead consider maps into the quater-
nions H, which allows us to work directly with surfaces sitting in
R3. In particular, we introduce a quaternionic Dirac operator and
use it to develop a novel integrability condition on conformal
deformations. Our discretization of this condition results in a
sparse linear system that is simple to build and can be used to
efficiently edit surfaces by manipulating curvature and boundary
data, as demonstrated via several mesh processing applications.

Keywords: digital geometry processing, discrete differential
geometry, geometric modeling, geometric editing, shape space
deformation, conformal geometry, quaternions, spin geometry,
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1 Introduction

How does one compute conformal deformations of a surface
in R3? Discretizing the well-known Cauchy-Riemann equations
does not help because these equations apply only to maps into
the plane. We instead describe the geometry of a surface M
via an immersion f : M → ImH into the imaginary part of the
quaternions ImH (Section 3). In this setting two surfaces f and
f̃ are conformally equivalent as long as their differentials df and
df̃ are related by a scaling and rotation λ ∈H at each point:

df̃ = λ̄dfλ.

The surface f̃ is called a spin transformation of f [Kamberov
et al. 1998]. However, for arbitrary λ, this equation may have
no solution. We introduce a linear integrability condition

(D−ρ)λ= 0

that characterizes all valid transformations λ in terms of a pre-
scribed change ρ in mean curvature half-density (Section 4.1) and
a first-order differential operator D called the Dirac operator (Sec-
tion 4). The corresponding discrete operator is remarkably sim-
ple, involving only triangle areas and edge vectors (Section 5.2).

Figure 1: Using spin transformations, a model that has already
been carefully detailed (left) can be further altered without com-
promising texture or geometric detail (middle), whereas standard
mesh editing tools may not respect these features (right).

Practically speaking, this setup allows us to “paint” a change in
curvature on a surface and produce the corresponding conformal
deformation (Figures 2 and 13). As a result, we can edit surfaces
without degrading texture (Figures 1 and 20) or mesh quality
(Figure 3). The linearity of our formulation is most unusual: if
one instead wants to prescribe standard quantities (such as the in-
duced metric, principal curvatures, etc.) more difficult non-linear
problems must be solved [Eigensatz et al. 2008]. We can also
perform standard mesh processing tasks such as flattening and
curvature flow (Section 7.3), and find conformal approximations
of arbitrary deformations (Section 7.2).

Contributions We introduce the quaternionic Dirac operator, lead-
ing to a beautifully simple integrability condition for spin transfor-
mations of smooth surfaces (Section 4). This condition is readily
discretized, enabling robust and accurate computation of confor-
mal deformations (Section 5). Deformations are computed by
solving an eigenvalue problem and a Poisson equation; matrices
have the same sparsity as the standard cotangent discretization
of the Laplace-Beltrami operator [Duffin 1959]. Our discrete
Dirac operator faithfully captures the spectrum of its smooth
counterpart, and can be used to produce (for the first time) sur-
face deformations that are perfectly conformal in the limit of
refinement, as validated by numerical experiment (Section 6).
We also show how changes in mean-curvature half density can
be used to express a variety of mesh processing tasks (Section 7).

Figure 2: Given desired change in curvature (left) we construct
a new conformally equivalent surface (right). Green and purple
indicate a positive and negative change in curvature, respectively.
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Figure 3: Spin transformations also preserve mesh quality. Top: a
grid of equilateral triangles (left) is substantially deformed while
preserving triangle shape almost perfectly (right). Bottom: A care-
fully quadrangulated beetle (left) becomes an old beat up car (right)
without degrading element quality.

2 Related Work

Differential representations are well-studied in digital geometry
processing [Botsch and Sorkine 2008] but ignore the question of
integrability: under what condition does a prescribed differential
quantity come from an actual surface? The standard practice is to
forgo this question and instead look for a surface that best approx-
imates prescribed data in the least-squares sense, as proposed by
Yu et al. [2004]. For conformal maps we need to be more careful
since the closest surface may be far from conformal, even when
the new differential comes from a similarity transformation at
each point (see Figure 22 for a comparison).

Later work expressed edge vectors in local coordinate frames at
vertices to ensure rigid motion invariance [Lipman et al. 2005].
In this case reconstruction is non-linear since coordinate frames
depend non-linearly on vertex positions. Paries et al. [2007]
also seek conformal deformations and encode local frames as
quaternions λ at vertices. Reconstruction entails a sequence of
alternating least-squares problems: first to minimize the frame
differences dλ, then to find the closest surface f̃ ; ultimately, dis-
tortion remains (see Figure 19). In [Lipman et al. 2007] frame
differences are also minimized, with the additional non-linear
constraint |λ| = 1 at each vertex to enforce isometric deforma-
tion. As before the non-linear relationship between positions and
frames is resolved with an iterative scheme and no integrability
condition is considered.

Conformal deformations have also been studied in the context of
cage-based editing, where coordinate functions on a coarse volu-
metric cage induce transformations of an enclosed surface [Lip-
man et al. 2008; Ben-Chen et al. 2009]. The main difficulty
is that the only conformal maps from R3 to itself are Möbius
transformations, which are far too rigid for surface editing. As
a result, cage-based methods are inherently limited to so-called

quasi-conformal maps, which can still introduce significant distor-
tion (see Figures 4 and 18). On the other hand, these methods
are highly efficient since they need only evaluate simple (often
closed-form) coordinate expressions. It may therefore make sense
to use spin transformations in conjunction with such methods to
produce a final, high-quality surface (see Section 7.2).

Discrete conformal maps have been studied extensively in the
case of surface parameterization where the target surface has
constant curvature (such as the plane or the sphere). A common
approach is to compute a pair of discrete harmonic functions
that describe a map into the plane, requiring the solution of a
linear system [Mercat 2001; Desbrun et al. 2002; Lévy et al.
2002; Gu and Yau 2003], or an eigenvalue problem [Mullen et al.
2008]. Conformal transformations can also be constructed by
prescribing values at vertices that directly control the rescaling of
the metric [Ben-Chen et al. 2008; Yang et al. 2008; Springborn
et al. 2008]. However, a metric alone is not sufficient to describe
an embedding and so the restriction to constant curvature is
needed to realize the final surface. We instead store values λ ∈H
at vertices that encode both local rescaling and rotation, which is
sufficient to describe the extrinsic geometry of a deformation.

Several methods allow prescription of extrinsic curvatures [Eigen-
satz et al. 2008] and metric properties such as length [Eigensatz
and Pauly 2009]. However, the resulting energies are expressed
in terms of vertex positions, making them highly non-linear. Us-
ing higher-order differential quantities (such as our function ρ)
as primary degrees of freedom may prove useful in this setting.

In contrast to previous approaches our setup ensures that trans-
formations are conformal by construction – any failure to achieve
integrability on a mesh is due purely to discretization error (Sec-
tion 6.3). In contrast, the discrete theory of conformal equivalence
developed by Springborn et al.[2008] ensures exact reconstruc-
tion for target surfaces of constant curvature.

Figure 4: Following [Lipman et al. 2008, Fig. 13], comparison of
a cross-shaped bar (top) deformed using green coordinates (left)
and the closest spin transformation (right), computed as in Sec-
tion 7.2. Notice that the spin transformation preserves circles per-
fectly. See [Lipman et al. 2008] for comparison with other methods.



Figure 5: We represent the geometry of a surface in R3 using a map
f that associates each point on a surface M with a point in the
imaginary quaternions ImH.

3 Background
We first recall facts about quaternions and differential forms that
are needed to describe our smooth setup. The reader may also
benefit from the discussion in [Desbrun et al. 2008]; the role
of the Dirac operator in the geometry of surfaces is discussed
in [Pedit and Pinkall 1998; Friedrich 1998; Taimanov 2006].

Quaternions The quaternions H can be viewed as a 4D real vec-
tor space with basis {1, i, j, k} along with the non-commutative
Hamilton product, which satisfies the relationships i2 = j2 = k2 =
i jk = −1. The imaginary quaternions ImH are elements of the
3D subspace spanned by {i, j, k}. The conjugate of a quaternion
q = a+ bi+c j+dk is given by q̄ = a− bi−c j−dk, hence q̄ =−q
when q ∈ ImH. The squared length of q is given by |q|2 = qq̄,
and finally qp = p̄q̄ for all q, p ∈H.

Rotation of a vector v ∈ ImH is expressed via conjugation by
a unit element |q| = 1, i.e., ṽ = q̄vq is a rotated version of v.
More generally, for |q| 6= 0, q̄vq represents a similarity trans-
formation, i.e., rotation and uniform scaling by |q|2. Explicitly,
q = a(cos(θ/2)+sin(θ/2)u) yields a scaling by a2 and a rotation
by an angle θ around the axis u.

Quaternion Calculus Just as complex analysis identifies R2 with
the complex plane C, we identify R3 with ImH: points (x , y, z) ∈
R3 become points x i + y j + zk ∈ ImH. A surface in R3 is then
specified by a smooth map f : M → ImH from an abstract surface
M to its realization in 3-space (Figure 5). More generally we will
consider functions that take values anywhere in H.

The differential df : TM → ImH maps tangent vectors on M
to vectors in 3-space, i.e., X 7→ df(X ) – in coordinates, df is
the Jacobian matrix, though we do not use that representation
here. If df is non-degenerate everywhere, then f is an immersion
(note that immersions still permit self-intersections). If |df (X )|
depends only on the length (and not the direction) of X , then f is
a conformal immersion – in other words, stretching is equal in all
directions. In this case the squared length element |df |2 gives us
the (unsigned) area element, or the induced Riemannian metric.

4 Spin Transformations

Consider two immersions f , f̃ : M → ImH of a given surface M
(see Figure 6). These surfaces are said to be spin equivalent if
their differentials are related by a similarity transformation, i.e.,
if there exists some function λ : M →H such that

df̃(X ) = λ̄df(X )λ (1)

for all tangent vectors X . In this case the induced Riemannian
metrics |df |2 and |df̃ |2 = |λ|4|df |2 are related by a positive scaling
|λ|4, hence the two immersions are also conformally equivalent.

A more typical scenario is that a surface f is given and we wish to
find a spin transformation f̃ . An arbitrary λ will not, in general,
produce a 1-form df̃ that is the differential of some surface f̃ , i.e.,
λ̄dfλ may not be integrable. Hence, even in the smooth setting
we cannot solve Eq. (1) unless λ satisfies very special criteria.

Fortunately, a simple, linear condition on λ guarantees integra-
bility. This condition was originally derived by Kamberov et al.
[1998, Lemma 2.2], but we propose a form that is more suitable
for discretization. In particular, we define the quaternionic Dirac
operator

Dλ=−
df ∧ dλ

|df |2
. (2)

Roughly speaking, D is a generalization of the gradient opera-
tor which expresses first-order derivatives of both scalar- and
vector-valued functions on M (see Section 8), and in local coor-
dinates is equivalent to the standard Dirac operator from physics
(see Appendix A). Readers familiar with exterior calculus should
note that division by the area element |df |2 simply indicates the
canonical identification of 2-forms with 0-forms, as is usually
expressed via the Hodge star.

Using D, one can easily show that λ̄dfλ is integrable if and only
if λ satisfies the integrability condition

(D−ρ)λ= 0 (3)

for some real-valued function ρ : M → R (see Appendix B).

At first glance this problem seems difficult to solve: we have to
simultaneously find a function ρ and a similarity transformation λ
satisfying Eq. (3). However, suppose that ρ is any scalar function
whatsoever. If we solve the eigenvalue problem

(D−ρ)λ= γλ (4)

for the pair (γ,λ) with γ ∈ R, it follows that (D− (ρ+ γ))λ= 0,
i.e., we get an exact solution for Eq. (3) by simply adding a
constant shift γ to ρ.

Overall, then, we have the following procedure:

1. pick a scalar function ρ on M ;

2. solve an eigenvalue problem (Eq. (4)) for the similarity
transformation λ;

3. solve a linear system (Eq. (1)) for the new surface f̃ .

A discrete version of this procedure is developed in Section 5.

Figure 6: Given an initial immersion f of a surface, a new immer-
sion f̃ is a conformal deformation or spin transformation if the
differentials of these maps are related by scaling and rotation.



4.1 Mean Curvature Half-Density

In the procedure above deformations are specified via the scalar
function ρ. What is the geometric meaning of ρ?

Let H denote the mean curvature of an immersion f and let |df |
denote the induced length element. Then the quantity H|df |
is called the mean curvature half-density of f , and the mean-
curvature-half density of a spin transformation f̃ is given by

H̃|df̃ |= H|df |+ρ|df |

(see Kamberov et al. [1998, Lemma 2.3]). Thus ρ controls the
change in mean curvature half-density – its effect is illustrated
in Figures 2 and 13. Note, then, that the effect of applying
a constant shift to ρ is akin to adding a constant value to a
grayscale image – the resulting appearance is largely the same.

Working with H|df | is often more natural than manipulating
mean curvature itself. For instance, an increase in H is often
thought of as an increase in bending, but could also indicate uni-
form shrinking and a simultaneous decrease in bending. On the
other hand H|df | is scale-independent (since H is inversely pro-
portional to length) and the meaning is unambiguous: increasing
H|df | exaggerates bending; decreasing H|df | mitigates it.

4.2 Non Trivial Topology

On surfaces that are not simply-connected the transformed differ-
ential ω = λ̄dfλ still describes a conformal immersion of M , but
the immersion may fail to “close up” globally – this failure is en-
coded by the harmonic component of ω. Our reconstruction step
(Section 5.6) effectively removes the harmonic part by seeking
the closest exact form df̃ , which can introduce a low-frequency
shear in the solution that does not vanish under refinement. How-
ever, in our experience such distortion is negligible, producing
excellent results in practice (see Figures 3 and 16).

4.3 Boundary Conditions

For surfaces with boundary the condition (D − ρ)λ = 0 must
be supplemented by appropriate boundary conditions. As with
Cauchy-Riemann, prescribing the exact position of boundary
points is too strong in the sense that we may not end up with a
conformal map. We instead prescribe the tangent directions of the
new boundary curve arbitrarily at each point (see for example
Figure 7). An implementation of these boundary conditions is
detailed in section 5.7. Note that when the target mesh is pla-
nar our boundary condition amounts to prescribing the boundary
curvature [Ben-Chen et al. 2008; Springborn et al. 2008] and we
get a unique conformal solution.

Figure 7: The boundary of a surface (left) can be modified without
disrupting texture or geometric detail (right, 𝒬mean = 1.016).

Figure 8: Even on a coarse mesh of 8k triangles the spectrum of
our discrete operator (black dots) matches the predicted spectrum
(green dots) exceptionally well. Here we plot the first twenty distinct
eigenvalues (out of 120 total) for the unit sphere.

5 Discretization

In this section we discretize the operators used in Eq. (4). We
use sans serif characters to denote the matrix of a smooth linear
operator – for instance, L approximates L.

5.1 Quaternionic Matrices

Matrices X ∈ Hm×n with quaternion-valued entries provide a con-
venient representation for the operators used in our discretiza-
tion. Although standard packages for numerical linear algebra
do not support quaternionic matrices, they can easily be imple-
mented by constructing a real matrix X̂ ∈ R4m×4n where each
entry q = a+ bi+ c j+ dk is replaced by a 4× 4 block









a −b −c −d
b a −d c
c d a −b
d −c b a









.

(If performance or storage are an issue, one can alternatively
provide a callback routine that applies the Hamilton product di-
rectly.) Note that the real transpose of such a matrix corresponds
to the conjugate transpose of the original quaternionic matrix,
i.e., X̂T = XH .

5.2 Discrete Dirac Operator

To compute spin transformations of meshes, we
need a discrete Dirac operator D. Assume that 𝒦 =
{V, E, F} is an oriented 2-manifold triangle mesh
with a value fi ∈ ImH and λi ∈ H at each vertex.
Then D ∈ H|F |×|V | is a sparse (3 entries per row)
rectangular matrix whose nonzero entries are

Di j =−
1

2𝒜i
e j , (5)

where 𝒜i is the area of triangle σi , j is the index of any vertex v j
of σi , and e j is the opposing edge vector (see insert). Note that
edge vectors should be oriented counter-clockwise around each
triangle.



There are a number of ways to derive D, but the simplest is
perhaps to observe that Dλ can be written as

Dλ=
d(df λ)
|df |2

.

Then if f and λ are piecewise linear functions interpolating val-
ues at vertices, integrating the function Dλ over a triangle σl
with vertices (i, j, k) gives us
∫

σl

Dλ|df |2 =
∫

∂ σl

df λ=
∑

σi j∈∂ σl

∫

σi j

df λ=
∑

σi j∈∂ σl

( f j − fi)
λi+λ j

2
.

Simplifying this sum with ek = f j − fi (and similarly for the other
edges) and noting that Dλ is constant in each face, we can divide
by area to get the density

−
1

2𝒜l
(eiλi + e jλ j + ekλk),

which is precisely the quantity computed by our matrix above.

5.3 Scalar Multiplication

To solve our eigenvalue problem (Eq. (4)) we also need a dis-
cretization of ρ, which represents scalar multiplication by a real-
valued function. We proceed as above by integrating over trian-
gles – in particular, let ρ be a piecewise constant function with
values ρi ∈ R on each face, and let λ be piecewise linear as
before. Then we have

1

𝒜i

∫

σi

ρλ|df |2 = ρi







1

3

∑

v j∈σi

λ j







over any triangle σi . For our purposes it will be convenient to
express the corresponding discrete operator R ∈H|F |×|V | as

R= PB

where P ∈H|F |×|F | is a diagonal matrix with entries Pii = ρi , and
B ∈H|F |×|V | amounts to a simple triangle-vertex incidence matrix
with nonzero entries Bi j = 1/3 for each vertex v j of triangle σi .
Finally, we let A = D− R be the discretization of the operator
A= (D−ρ) appearing in our eigenvalue problem (Eq. (4)).

5.4 Adjoint Matrices

We will also need the adjoint matrices D∗, A∗, etc.(with respect to
the usual L2 inner product). Consider the diagonal mass matrices
MF ∈H|F |×|F | of triangle areas and MV ∈H|V |×|V | containing one-
third the area of triangles incident on each vertex. Then the
adjoint of any matrix X ∈H|F |×|V | is given by M−1

V XH MF . In the
systems we consider the term M−1

V appears on both the left- and
right-hand side – for convenience we omit this term and adopt
the notational convention

X∗ = XH MF .

5.5 Discrete Eigenvalue Problem

Consider the eigenvalue problem (D−ρ)λ = γλ from Section 4.
If we try to discretize this equation as simply Aλ= γBλ we get a
rectangular eigenvalue problem, which is difficult to solve directly.
One idea is to make the system square by averaging the values
Aλ and Bλ from faces back to vertices, but this local averaging
introduces spurious modes to the null space that severely corrupt
solutions.

We can instead obtain a square system in the following way. Con-
sider that any solution (γ,λ) to the problem Aλ= γλ also yields

a solution to the problem A2λ = γ2λ. However, the opposite is
not true since positive and negative eigenspaces can “mix” when
we square A. In other words, if (γ,λ+) and (−γ,λ−) are solutions
to the original problem then linear combinations of λ+ and λ−

are eigenfunctions of A2 but not of A. The solution is to use the
generalized eigenvalue problem A2λ = γAλ, where the additional
factor of A on the right hand side now distinguishes between
eigenvalues of different sign. This leads us to the system

A∗Aλ= γB∗Aλ, (6)

which we solve for the smallest eigenvalue γ and its correspond-
ing eigenvector λ ∈H|V |. Solutions to this problem exhibit excel-
lent agreement with smooth solutions (see Section 6).

For surface editing tasks we are usually interested in the eigen-
value closest to zero and do not have to worry as much about
mixing eigenspaces. In practice, then, we can often solve the
problem A∗Aλ= γMVλ, or equivalently the standard eigenvalue
problem

(AV)∗AVλ̂= γλ̂, (7)

where V = M−1/2
V and λ = Vλ̂ recovers the final solution. We

use this problem for most of the applications in Section 7. Note
that all matrices in systems (6) and (7) – including B∗D – are
sparse and symmetric, with positive semi-definite operators on
the left-hand side. It is easy to verify that these operators involve
values only in the 1-ring of a given vertex. Finally, in practice
we observe improved numerics if the entries of V are rescaled to
have mean value 1.

5.6 Discretized Spin Transformations

After solving for the similarity transforma-
tions λ, we still need to determine the fi-
nal vertex positions f̃i by solving df̃ = λ̄dfλ
(Eq. (1)). In the discrete setting this equation says that each new

Figure 9: On the sphere, eigenfunctions of the Dirac operator cor-
respond to relativistic wave functions of an electron orbiting an
atomic nucleus, here visualized for the first time.



edge vector ẽi j = f̃ j − f̃i should equal the edge vector ei j = f j − fi
from the original mesh scaled and rotated by λ. This transforma-
tion is discretized by integrating λ̄df λ along each edge, yielding

ẽi j =
1

3
λ̄i ei jλi +

1

6
λ̄i ei jλ j +

1

6
λ̄ j ei jλi +

1

3
λ̄ j ei jλ j . (8)

At this point we can solve the linear system df̃ = ẽ for vertex
positions f̃ . To do so we minimize the residual r = |df̃ − ẽ|2,
which amounts to a standard Poisson problem ∆ f̃ =∇ · ẽ. Dis-
cretization of this problem yields (using notation from [Des-
brun et al. 2008]) the standard cotangent-Laplace matrix ∆ =
dH

0 ?1 d0 ∈ H|V |×|V | and divergence operator ∇·= dH
0 ?1 ∈H|V |×|E|

built as quaternionic matrices with purely real entries.

One might wonder why we need to solve this system in the least-
squares sense – after all, in the smooth setting our integrability
condition (Eq. (3)) guarantees that Eq. (1) has an exact solution.
As with linear discretizations of Cauchy-Riemann, however, this
exactness does not carry over to the discrete setting. Nonetheless
we find that, empirically, the magnitude of the residual r depends
only on mesh resolution and vanishes under refinement. More
importantly, even at a coarse level we see substantial improve-
ment over methods that do not consider integrability, which may
exhibit significant conformal distortion even under refinement
(see Figures 4, 18, 19 and 22).

5.7 Discrete Boundary Conditions

Suppose that T and T̃ are unit tangent vec-
tors that specify initial and target directions
at each boundary point. Furthermore, let
θ be the angle between T and T̃ and let
w = T × T̃/ sinθ be the unit vector orthog-
onal to both tangents. (For T̃ =±T we use
θ = 0 and any vector w.) Then λ must have the form

λ=
�

cos θ
2
+w sin θ

2

�

(a+ bT̃ )

for any a, b ∈ R. The first term rotates from T to T̃ and the
second term describes subsequent scaling and rotation around T̃ .

In the discrete setting we store a pair of values a, b ∈ R at each
boundary vertex (in lieu of a value λ ∈ H) and build the block
diagonal matrix C ∈ R4|∂ V |×2|∂ V | where ∂ V is the set of boundary
vertices and each block has the form











1 0
0 T̃ x

0 T̃ y

0 T̃ z











,

where T̃ x , T̃ y , T̃ z are the components of T̃ . We also build the
diagonal matrix W ∈H|V |×|V | where Wii equals 1 for interior ver-
tices and cos(θi/2)+wi sin(θi/2) for boundary vertices vi . Finally,
indexing interior vertices before boundary vertices we build

U=W

�

I 0
0 C

�

,

which maps both interior and boundary degrees of freedom to
the values of λ. Hence, Eq. (7) becomes (AVU)∗AVUλ̂= γλ̂ and
the final solution is recovered by evaluating λ= VUλ̂.

6 Validation

In this section we validate our discrete D against known proper-
ties of the smooth operator and inspect convergence behavior.

Figure 10: Because we discretize a smooth energy, similar results
are achieved on a uniform (left) and nonuniform sampling of the
domain(right). Here a bump is added to an initially flat disk.

6.1 Quasi-Conformal Error

Throughout the paper we measure the quality of any map g
between immersed surfaces in terms of quasi-conformal error
𝒬 ∈ R|F |, which is the ratio of largest to smallest singular value
of dg in each face [Sander et al. 2001]. An error of 𝒬i = 1 in
each face is ideal, indicating that no shearing takes place (only
uniform scaling and rotation). We use 𝒬mean to denote the (area-
weighted) mean quasi-conformal error over the entire surface.

6.2 Spectrum of Discrete Dirac Operator

On the unit sphere the eigenvalues of D are the integers n ∈ Z,
which appear with multiplicity n+1 (note that this means n=−1
does not appear at all). Figure 8 indicates that the spectrum of
D is in excellent agreement with the smooth spectrum – these
eigenvalues also appear with the correct multiplicity n+ 1.

Eigenfunctions of D on the unit sphere are called the spinor
spherical harmonics, which can be used to compute fundamental
solutions to the Dirac equation for the configuration of a spin-1/2
particle such as an electron in a spherically symmetric potential
(this relationship motivates the “spin equivalence” terminology).
The corresponding spin transformations f̃ are called the Dirac
spheres, which provide another basis for validation since closed-
form expressions are known and have previously been visualized
for small values of n [Richter 1997] (see Figure 11). We are also
able to visualize for the first time Dirac spheres corresponding to
higher energy states (Figure 9). Note that here we must remove
the constant component from each eigenvector, since constant
solutions are in the null space of the system D∗Dλ= γB∗Dλ.

6.3 Convergence

Numerical tests such as the one in Figure 12 indicate that surfaces
produced by our method converge to perfectly conformal defor-
mations in the limit of refinement. Note that D is a self-adjoint
elliptic operator, which means that on a compact surface it has a
discrete spectrum. Hence, asking for the smallest eigenvalue is a
well-posed problem, and linear convergence is precisely what we
expect from a piecewise linear discretization. Figure 10 suggests
that results do not depend heavily on element quality. These tests
used the standard eigenvalue problem (Eq. (7)).

Figure 11: Comparison with closed-form solutions. Left: constant-
curvature spin transformations of the unit sphere (from [Richter
1997]). Right: numerical solutions produced by our method.



Figure 12: Convergence of sphere with bumps added – the limit
surface is a perfect conformal deformation (bottom right). Top:
quasi-conformal error with respect to mean edge length (lines fit to
first few data points). Bottom left: intermediate surfaces showing
spatial distribution of quasi-conformal distortion (1 is ideal).

7 Applications

Many mesh processing tasks can be expressed in terms of a
change in mean curvature half-density – this section takes a
quick look at some of these applications. We used the eigs
function in MATLAB to solve systems (6) and (7); not surpris-
ingly, performance was very similar to spectral methods for mesh
parameterization [Mullen et al. 2008]. For instance, computa-
tion on a mesh of ∼33k faces (Figure 13) took about 7 seconds
on a 2.4 GHz Core 2 Duo laptop. Overall performance scaling
was roughly linear in the number of faces.

7.1 Painting Curvature

The most straightforward way to specify a deformation is to
“paint” a function ρ on a surface, altering its curvature (Figure 2).
Since ρ is a scalar quantity, we can easily process surfaces by
applying standard image filters (Figure 13). In Figure 1 we add
detail to an already carefully-textured model. Figure 3 illustrates
that adding bumps does not damage element quality (for the car
example we temporarily split each quad into two triangles).

Generally speaking, if g is a bump function used to displace
a surface in the normal direction, setting ρ = ∆g produces a
similar but conformal bump (see Figure 20 for example). This
idea is based on the observation that for a flat surface undergoing
a normal deformation f̃ (t) = f + t gN , the change in H̃|df̃ | at
time t = 0 equals ∆g. Additionally, ρ should not contain any
large spikes since it is difficult to significantly deform a small
number of triangles while remaining conformal (consider trying
to add a large amount of curvature to a single vertex 1-ring).

7.2 Arbitrary Deformations

More generally, we can take a mesh that has been deformed arbi-
trarily and find a nearby spin transformation. We first compute
“best-fit” similarity transformations in each face – in particular,
let A1, A2 be rotation matrices bringing the source and target face
into a common plane, and let B be the (orientation-preserving)
map between the resulting planar triangles. If B = RY is the polar
decomposition of B, then the best-fit similarity transformation is

S =
p

det(Y )A−1
2 RA1,

i.e., the geometric average of principal stretches times the rota-
tional component of the map between triangles. These transfor-
mations are expressed as quaternions and averaged from faces
to vertices to get a value µi at each vertex.

In general µ will not satisfy our integrability condition, but we
can still find a change in curvature that closely approximates the
target surface by minimizing |Dµ − RBµ|2 with respect to the
values ρi . The optimal values are given explicitly by

ρi =
Re((Bµ)i(Dµ)i)
|(Bµ)i |2

.

We then solve for λ and the new surface f̃ as usual. In Figure 14
we edit a mesh using commercial software and project the result
onto a nearby spin transformation, preserving texture; see also
Figures 4, 18, and 19. We found that the generalized eigenvalue
problem (Eq. (6)) proved more robust for this application.

Deformations with a large amount of shear may not be well-
approximated by any conformal map, even in the smooth setting.
Here we can make a tradeoff between approximation quality and
conformality by interpolating between µ and λ (Figure 21).

Figure 13: Top left: the man in the moon is sculpted by “painting”
a scalar function (inset) onto a disk. Applying standard image
filters to this function achieves a variety of effects while preserving
a conformal map to the original disk. Top right: low-pass filter.
Bottom left: high-pass filter. Bottom right: unsharp mask.



Figure 14: Giraffe attempts ballet: a textured mesh (left) can be
modified arbitrarily and projected onto the nearest conformally
equivalent surface (middle, 𝒬mean = 1.015), preserving texture
fidelity. We can also explicitly modify scale without disturbing
texture – on the right we ask for a much larger head.

Figure 15: By controlling the curvature and the direction of tangent
vectors at the boundary we can lift a planar cartoon (left) into
the third dimension (middle) and recover the closest conformally
equivalent shape (right). Note that the initially squashed leg, tail,
and head, recover their initial shape. (𝒬mean = 1.011)

7.3 Willmore Flow

The L2 norm of the mean curvature half-density H|df | (Sec-
tion 4.1) conveniently yields the Willmore functional

𝒲 =
∫

M

H2|df |2,

which is used in digital geometry processing for surface fairing
and the construction of minimal surfaces [Bobenko and Schröder
2005]. Using our framework we can compute what we call the
conformal Willmore flow

d
d t
ρ =−∇𝒲(ρ)

which reduces mean curvature as quickly as possible while pre-
serving a conformal map at each point in time. Of course, this
flow is subject to our usual constraint (D−ρ)λ = 0. On a disk this
constraint can be satisfied for any ρ (without a shift) and hence
the flow has the simple closed form expression ρ(t) = −tH,
where H is the initial mean curvature. The situation on a sphere
is not as simple, and will be investigated in future work.

At an extreme, flow on a (possibly punctured) disk removes all
mean curvature, yielding a minimal surface (Figure 16, top) –
note that this “flow” can actually be computed in a single time
step by setting ρ = −H. Prescribing a planar boundary pro-
gressively flattens the surface, ultimately achieving a conformal
parameterization (Figure 17). In these experiments we computed
H via the magnitude of the mean curvature normal HN =∆ f .

7.4 Boundary Prescription

We can also edit surfaces by manipulating boundary data. In
Figure 7 we modify the boundary shape while maintaining the
mean curvature half density (ρ = 0), thereby preserving geomet-
ric features. Notice that some features change scale, which is
permitted by our conformal energy. This same setup provides us
with a novel way to compute minimal surfaces: start with a flat
surface and prescribe a new boundary without changing H|df |
(Figure 16, bottom). Finally, we can prescribe a new boundary
and new curvature, as in Figure 15 where we compute ρ as de-
scribed in Section 7.2. In these applications we simply set T and
T̃ to the (unit) outgoing edge vector at each boundary vertex of
the source and target mesh, respectively.

8 Conclusion

Our discretization of the integrability condition (D − ρ)λ = 0
provides a principled, efficient way to construct conformal defor-
mations of triangle meshes in R3. On the whole, it is remarkable
that an operator as simple as D (Eq. (5)) is enough to discretize
the wide variety of tasks described above, requiring very little
additional machinery in each case. An even bigger surprise is that
the discrete Dirac operator has many uses beyond constructing
conformal maps: it enables a unified treatment of vector calculus
on immersed surfaces, incorporating div, grad and curl into a
single operator on quaternionic functions. Its square can also
be used to recover the Laplace-Beltrami operator for both scalar
functions and vector fields. Moreover, since our quaternionic
D is expressed in terms of extrinsic geometry it can be used to
compute normal information, mean curvature, and the shape
operator. These properties and their applications will be explored
in future work.

Figure 16: Spin transformations can be used to compute minimal
surfaces in two distinct ways. Top: starting with a curved surface
(left) we remove all mean curvature (right, 𝒬mean = 1.070). Bot-
tom: starting with a flat surface (left) we prescribe new tangent
directions along the boundary without changing mean curvature
(right, 𝒬mean = 1.054). In both cases the surface is computed
directly without an iterative flow.



Figure 17: Conformal Willmore flow on a rhino head: mean curvature shrinks as quickly as possible.
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A Relationship with Standard Dirac Operator
The Dirac operator for a spin 1/2 particle in the plane is given by
−i(σx∂x +σy∂y), where σx and σy are the Pauli matrices

σx =
�

0 1
1 0

�

, σy =
�

0 −i
i 0

�

.

Note that any function λ : M →H can be written as λ =ψ1+ jψ2

for some pair of C-valued functions ψ1,ψ2. Define ∂ and ∂̄ via

∂ψ := 1
2
(∂x − i∂y)ψ, ∂̄ ψ := 1

2
(∂x + i∂y)ψ.

If our surface f locally maps to the j, k-plane, i.e., f = jz for
some z : M → C, then we have

df ∧ dλ= jdz ∧ ((∂ψ1dz+ ∂̄ ψ1dz̄) + j(∂ψ2dz+ ∂̄ ψ2dz̄))

= ( j∂̄ ψ1 + ∂ψ2)dz ∧ dz̄

=−2( j∂̄ ψ1 + ∂ψ2)(i|df |2).

Dividing through by −1/|df |2 we get Dλ = 2( j∂̄ ψ1 + ∂ψ2)i,
which means the matrix of D is

D = 2
�

0 ∂

∂̄ 0

�

i = i(σx∂x +σy∂y),

i.e., our quaternionic Dirac operator is locally the same as the
standard Dirac operator up to sign.

B Derivation of Integrability Condition
(This derivation follows [Kamberov et al. 1998].) The spin-
equivalence condition (Eq. (1)) says that the 1-form λ̄df λ must
be exact. On a simply-connected surface M , this is equivalent to
saying that this 1-form is closed, from which we get

0= d(λ̄df λ) = dλ̄∧ df λ− λ̄df ∧ dλ= λ̄df ∧ dλ− λ̄df ∧ dλ.

But for any quaternion q ∈H, q− q̄ = 2 Im q. The above expres-
sion therefore says that the 2-form λ̄df ∧ dλ is purely real, or in
other words, λ̄df ∧ dλ= ρ̂|df |2 for some real function ρ̂. Equiv-
alently, we can require that −df ∧ dλ = ρλ|df |2 for a different
real-valued function ρ which is related to ρ̂ by ρ = −ρ̂/|λ|2.
Substituting D into this final expression yields (D−ρ)λ= 0.

Figure 18: Quasi-conformal deformation (center) produced via a
variational harmonic map [Ben-Chen et al. 2008] and a nearby
spin transformation computed as in Section 7.2 (right).
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Figure 19: Deformation produced via the method of consistent local
frames [Paries et al. 2007](center) and a nearby spin transforma-
tion computed as in Section 7.2 (right).

Figure 20: Left: even for modest displacements, simple normal off-
sets can severely distort texture. Right: using a spin transformation
to apply displacement prevents distortion.

Figure 21: Twist is inherently non-conformal, effectively a sequence
of infinitesimal shears. Therefore, the conformal “deformation”
closest to a twisted beam (top right) is the original beam (top left).
We can trade off between conformality and approximation quality
(left to right).

Figure 22: Bent block reconstructed using least-squares (top) and
our integrable approach (bottom). Colors indicate quasi-conformal
error 𝒬.
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