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We study the isometric immersion problem for orientable surface triangle

meshes endowed with only a metric: given the combinatorics of the mesh

together with edge lengths, approximate an isometric immersion into R3
. To

address this challenge we develop a discrete theory for surface immersions

into R3
. It precisely characterizes a discrete immersion, up to subdivision and

small perturbations. In particular our discrete theory correctly represents the

topology of the space of immersions, i.e., the regular homotopy classes which

represent its connected components. Our approach relies on unit quaternions

to represent triangle orientations and to encode, in their parallel transport,

the topology of the immersion. In unison with this theory we develop a

computational apparatus based on a variational principle. Minimizing a

non-linear Dirichlet energy optimally finds extrinsic geometry for the given

intrinsic geometry and ensures low metric approximation error.

We demonstrate our algorithm with a number of applications from math-

ematical visualization and art directed isometric shape deformation, which

mimics the behavior of thin materials with high membrane stiffness.
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1 INTRODUCTION
Suppose for some abstract surface we only know its metric. Can

you map it into R3
in such a way that lengths of curves on the

surface are preserved and small disks are realized in a 1-1 manner?

We wish to solve this isometric immersion problem in the discrete

setting when the surface is given in terms of a triangle mesh anno-

tated with nothing more than lengths for every edge. A practical

algorithm to numerically approximate such isometric immersions

could have many applications. In Mathematical Visualization, we

may encounter surfaces which are given purely in terms of their
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Fig. 1. Turning the bunny inside out while preserving its metric. See the
video at 02:32.

metric without any explicit immersion (Fig. 18). In Geometry Pro-

cessing we may be interested in isometric deformations which stay

immersed (Fig. 1). Or, if the metric is manipulated, be it in shape

space interpolation, editing, metric flows (Fig. 15), or others, we

may need to find an immersion realizing the new metric. And in art

directed form finding the characteristic “crumpling” behaviour of

close-to-isometric surfaces can be of value (Figs. 12 & 13).

To pursue a program of numerically approximating isometric

immersions we of course need to know that they exist in the first

place. Fortunately this is the case both in the C1
(once continuously

differentiable) setting [Kuiper 1955; Nash 1954] and in the PL (piece-

wise linear) setting [Burago and Zalgaller 1960, 1995] (the PL setting

also allows for additional piecewise linear subdivisions).

While these theorems ensure that isometric immersions always

exist and are even deformable, the respective constructions also

imply that there is an isometry arbitrarily near any (possibly scaled)

immersion. Among this multitude of possibilities (Fig. 2) we want to

Fig. 2. Two isometric immersions of a flat torus (upper left, not to scale) using
extensive “crumpling” (lower left) and nearly none (right). Both immersions
of the torus are approximately isometric yet the “crumpled” torus has a very
different appearance and apparent size.
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choose one which meaningfully captures the intrinsic geometry in

its extrinsic appearance.
Before we can develop an effective algorithm for discrete isometric

immersions we must first study the nature of discrete immersions in

general. What conditions must be true to ascertain that an assign-

ment of 3-space positions to the vertices of a triangle mesh yields

an immersion? What are the obstacles to being immersed and what

kind of apparatus is needed to manage these obstructions? More

globally, we need to characterize the topology (connected compo-

nents) of the space of immersions to control which immersions can

be deformed into one another while staying immersed throughout

the deformation, i.e., belong to the same regular homotopy class
(Fig. 14).

In this paper we develop a theory for discrete (triangle mesh)

immersions which recovers fundamental features of the smooth

setting. In particular we can choose and control the regular homotopy

class of an immersion we seek, and ensure that any deformation

stays in the same class. Due to the finite resolution of a given mesh,

this requires the representation of surface detail at finer scales

and we develop simple local procedures to detect such detail and

account for it appropriately. A critical ingredient in our construction

is the representation of triangle orientations with the aid of unit

quaternions. The parallel transport of these orientations provides
the key to encoding the topology of the space of immersions in the

discrete setup of a triangle mesh just as it does in the smooth setting.

Based on this theoretical development we design an algorithm

for the discrete isometric immersion problem. It takes as input an

orientable surface triangle mesh annotated with edge lengths only

and outputs vertex positions in R3
. Since the lengths already fix the

Euclidean shapes of all triangles, only orientations in R3
need to

be determined for each triangle. Vertex positions then arise as the

solution of an ancillary Poisson problem. These orientations repre-

sented by unit quaternions are found as minimizers of a (non-linear)

Dirichlet energy which encodes both the integrability conditions for
the surface to “stitch together” and the topological requirements for

being an immersion in a particular regular homotopy class. Triangle

meshes can of course only model deformations up to the resolu-

tion of the mesh. Since we do not wish to continually adapt the

triangulation we resolve properties such as being immersed only up

to ϵ-perturbation and additional subdivision. For the same reason

isometry is only realized approximately.

To achieve our goal of selecting a meaningful shape from the

vast set of possible isometric immersions, an anisotropic norm

is used in the Dirichlet energy to control the amount of bending

regularization. Driving the associated parameter to zero we “steer

towards” geometrically meaningful immersions (with submesh detail

represented appropriately) which are close to isometric, i.e., possess
only moderate L2

-error.

1.1 Overview
After reviewing related work (Sec. 1.2) and fixing our notation

(Sec. 1.3) we develop our tools in the main part of the paper. To

characterize immersions (Sec. 2) we study triangle strips and their

regular homotopies (Sec. 2.1). Being able to detect their homotopy

class, one of only two, becomes the key to recognizing vertices

which are immersed (up to further subdivision and a small perturba-

tion) and those which present essential obstacles to an immersion

(Sec. 2.2). To handle regular homotopy information intrinsically, i.e.,
without any mapping to R3

assumed, we encode it in the parallel

transport of orientations given by unit quaternions (Sec. 3). To

ensure that a given generic map f : M → R3
is in the correct class

it must be augmented with detail below the resolution of the mesh

(Sec. 4). All considerations up to that point apply to immersions in

general. For isometric immersions (Sec. 5) the triangle orientations

are subject to integrability conditions (Sec. 5.1), which we use to

formulate an energy (Sec. 5.2) to be minimized. We demonstrate the

efficacy of our approach (Sec. 6) before concluding (Sec. 7). Complete

implementation details can be found in Apps. A and D.

1.2 Related Work
Surface immersions into R3

were studied for a long time in mathe-

matics before computer graphics researchers and their algorithms

could contribute and we begin with a review of the history of

immersions before discussing computer graphics algorithms.

pinch point

immersed

1.2.1 History of Immersions. In the 19
th

century it was known that all topological

types of surfaces can be realized in R3
with

self-intersections if one allows for certain

singularities called pinch points (inset). It
was Werner Boy, who upended his PhD ad-

visor’s (Hilbert) belief, when he showed that

all such surfaces can in fact be immersed [Boy 1903]. Physical mod-

els of these are still in many historical collections [Fischer 2017,

Ch. 6]. This then begged the question whether there are funda-

mentally different types of immersions, which cannot be deformed

into one another while staying immersed. For the 2-sphere Stephen

Smale [1959] showed that there is only one such regular homotopy
class. Surprisingly, this implied that a sphere can be turned inside

out as visualized in the landmark computer graphics film Turning a
Sphere Inside Out [Max 1976]. Surfaces topologically more compli-

cated than spheres possess multiple regular homotopy classes [Hass

and Hughes 1985; Hirsch 1959; Pinkall 1985; Séquin 2011], which

our algorithm can distinguish (Fig. 14).

To discuss isometric immersions we must distinguish different

smoothness classes to understand what is possible. ForC∞ (infinitely

differentiable) isometric immersions very little is known [Berger

2010, Ch. VI.5] other than that no closed surface whose curvature is

nowhere positive can be realized in R3
and the hyperbolic plane

admits no isometric immersion. Bounded portions of it though do

and our algorithm can find them (Fig. 16). For most applications C∞

surfaces are too rigid.

What about isometric immersions of simplicial surfaces which

are linear on each triangle? In this setting we see surfaces with

nowhere positive curvature such as flat tori [Segerman 2016, p. 129]

and the surface on the left of Fig. 17 [Barros et al. 2011] which are

impossible for C∞ surfaces. Generically though, they are as rigid as

C∞ surfaces [Bös et al. 2016; Gluck 1974].

The picture changes considerably for C1
surfaces which possess

isometric immersions near any given immersion that does not grow
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the original metric [Kuiper 1955; Nash 1954]. Even though the Nash-

Kuiper C1
-theory is based on an infinity of finer and finer surface

“ripples,” it was recently used to create beautiful visualizations of flat

tori [Borrelli et al. 2012, 2013].

Isometric C1
immersions enjoy the same flexibility as general

immersions [Gromov 1986]. So in particular it is possible to turn

the sphere inside out isometrically. Our algorithm, for the first time,

allows us to visualize such isometric regular homotopies (Fig. 1).

Finally we have the class of PL-surfaces, which behave similar to

C1
surfaces. Given a triangle mesh and an immersion that does not

grow edge lengths one can construct a nearby isometric immersion

after a finite (though possibly very large) number of subdivision

steps mimicking the Nash-Kuiper “ripples” construction [Burago

and Zalgaller 1960, 1995].

1.2.2 Related Algorithms. Methods to realize triangle meshes in

R3
have been considered with varying assumptions on the avail-

able data. With only edge lengths one can directly minimize the

difference between embedded and target lengths [Boscaini et al.

2015; Isenburg et al. 2001] as a function of unknown vertex posi-

tions. Such a length strain energy corresponds to the membrane

energy of elasticity which measures the difference between the

given and desired metric [Chao et al. 2010; Panozzo et al. 2014;

Sorkine and Alexa 2007]. A pure membrane energy for surfaces

must be regularized, typically with a bending energy to avoid overly

“crumpled” solutions. Additionally, a good initialization, say with a

nearby surface, is needed to find a singularity free realization. Such

membrane approaches can also be understood from the point of

view of sparse multidimensional scaling (MDS). Sparse since only

immediate neighbor distances are used [Boscaini et al. 2015]. Note

that the more standard MDS approaches aim to find a realization

where extrinsic Euclidean distances in some low dimensional Rn

closely approximate the given intrinsic geodesic distances, a setting
quite different from ours.

There is also a class of approaches using rigid triangles and solving

for their orientations as functions of length and bending data [Baek

et al. 2015; Botsch et al. 2006; Bouaziz et al. 2012; Kircher and Garland

2008; Wang et al. 2012; Winkler et al. 2010] (these publications are

representative of many more in the literature). However, in the

absence of bending data (our setting) they do not reliably produce

immersions because they use representations insensitive to pinch

singularities. Such singularities, where some vertex star cannot

be made immersed even by subdivision and perturbation, are of a

topological nature and dealing with them requires special care as

explained in Sects. 2, 3 and 4.

1.3 Notation
We assume that an abstract Riemannian surfaceM is given to our

algorithm in the form of a triangle mesh, i.e., a simplicial complex

{V ,E, F } consisting of vertices, edges, and facets (triangles). The

i

j

ij

surface must be oriented, may have a boundary,

and can be of arbitrary topology. The main

object of our algorithm are the triangles i ∈ F .
Among the edges E we distinguish those which

are interior as E̊ ⊂ E. An oriented edge ij ∈ E̊
is named according to its incident triangles,

oriented positively with respect to the orientation of i ∈ F (inset).

For vertices V we similarly distinguish interior ones as V̊ ⊂ V . Each

triangle i ∈ F is equipped with a tangent vector spaceTiM , and each

edge e ∈ E is equipped with an abstract edge vector ve which can

be naturally identified with a vector in TiM for faces i incident to e .
The piecewise Euclidean metric ofM is defined by edge lengths

ℓ = (ℓe > 0)e ∈E which observe the triangle inequality and uniquely

determine a metric for TiM through |ve | = ℓe and, up to rigid

motion, a Euclidean triangle in R3
for each i ∈ F . Our main task is

to find an orientation in R3
for each triangle. We parameterize these

orientations with unit quaternions λi ∈ S
3 ⊂ H. We also call λi a

frame and λ = (λi )i ∈F a frame field.

Depending on context we will write quaternions as 4-vectors

in terms of the quaternionic units, q = s1 + u1i + u2 j + u3k or use

the “scalar plus vector” formalism q = s + u for u ∈ R3 ≡ ImH.
Conjugation then becomes a sign flip on the vector component,

q = s −u. Vectors embedded in R3
will be denoted in bold and we do

not distinguish between R3
vectors and imaginary quaternions ImH.

The real inner product for quaternions ⟨p,q⟩ = Re(pq) corresponds
to the Euclidean inner product on R4 ≡ H. Rotations of vectors
w ∈ R3 ≡ ImH are expressed in terms of unit quaternions q as

w̃ = qwq

where q = cos

( θ
2

)
− sin

( θ
2

)
n = exp(− θ

2
n) describes the rotation by

θ around the (unit) axis n ∈ S2 ⊂ R3
. Note that q and its antipode

−q describe the same rotation w 7→ w̃.

2 DISCRETE IMMERSIONS
As a first step in our study of discrete immersions we must find tools

to characterize and classify them.

Immersions of a surfaceM can be classified up to regular homotopy.
Two immersions f , ˜f : M → R3

are regularly homotopic if one can

be deformed into the other while remaining immersed throughout

the deformation. Recall that an immersion has the local embedding

property, i.e., small disks are realized in a 1-1 manner (inset in

Sec. 1.2.1). In the PL setting this leads to:

Definition 2.1 (Generic Map &Discrete Immersion). Amap f : M →
R3

is generic if (1) each triangle in F is mapped linearly onto a non-

degenerate triangle in R3
and (2) no edge in E̊ has f “fold back on

itself,” i.e., the angle between incident triangle normals is in (−π ,π ).
(Up to an ϵ-perturbation all maps f : M → R3

are generic.) The map

is a discrete immersion if in addition (3) f restricted to the star of

any interior vertex is an embedding.

Whether two surfaces are regularly homotopic can be decided

by examining regular homotopies of closed strips on the surface.

For such strips in R3
there are only two regular homotopy classes:

figure-8, which is regularly homotopic to a planar figure-8, (Fig. 3,
top right), and figure-0, which is regularly homotopic to a planar

figure-0 (Fig. 3, bottom right). For triangle meshes we get:

Theorem 2.2 (Regular Homotopy). (a) Immersions f , ˜f : M →
R3 are regularly homotopic (at least after subdivision) if and only if
every closed triangle strip γ in M is figure-8 (resp. figure-0) under
both f and ˜f . (b) An immersed triangle strip in R3 is the boundary of
an immersed disk if and only if it is figure-0.
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Fig. 3. Regular homotopies of strips in R3 in each of the two regular homo-
topy classes: figure-8 (top), figure-0 (bottom).

This theorem is well-known for smooth surfaces [Hass and

Hughes 1985; Pinkall 1985] and Haefliger and Poénaru showed [1964]

that regular homotopy theory for PL-surfaces looks exactly like the

smooth theory.

How can we decide in practice whether a given closed triangle

strip is figure-8 or -0?

2.1 Closed Triangle Strips
Consider an immersion f of an oriented closed triangle strip γ
described by an ordered, cyclic sequence of interior edges γ =
(e0, . . . , em−1) (indexed modulo-m) which are shared by consecutive

triangles along the cycle. For each such triangle i let ni denote
the unit normal of its embedding and ti = df (Ti ) the embedded

unit tangent between midpoints of successive edges in γ incident

on i (Fig. 4). Then for each ij = e ∈ γ there exists a unique unit

quaternion qi j satisfying

qi jniqi j = nj qi j tiqi j = tj Re(qi j ) > 0.

The first two equations determine qi j up to sign, so we only have to

check that the real part of qi j does not vanish. For this note that qi j is
the product of two rotations. One around ni by the discrete geodesic
curvature angle κi j , and the other around the embedded edge vi j by
the discrete bending angle αi j between consecutive normals (Fig. 4)

qi j = exp

(
−
κi j
2
ni
)

exp

(
−
αi j
2

vi j
|vi j |

)
. (1)

Since ni and vi j are orthogonal we have

Re(qi j ) = cos

( κi j
2

)
cos

( αi j
2

)
vi j

κi j

f

vi j

ni αi j
nj

ti
tj

Ti

Tj

Fig. 4. An immersed discrete triangle strip.

which is indeed positive since αi j ,κi j ∈ (−π ,π ). Since going around
the cycle gets us back to the identity we must have

qe0
· · ·qem−1

= ±1. (2)

Definition 2.3 (Figure 8/0). If Eq. (2) holds with the plus sign we

say that the cycle γ is figure-8; if it holds with the minus sign it is

figure-0.

Both cases occur (inset). Consider a cycle immersed in a plane

with normal vector i and vanishing bending angles. In this case the

discrete geodesic curvatures reduce to planar exterior angles, and we

have

qe0
· · ·qem−1

= exp

(
− i

2

∑
i j ∈γ

κi j
)
. (3)

Since the sum of the exterior angles of the

center curve of the triangle strip gives a 2π
multiple of its planar turning number we get

+1 for even (figure-8) and −1 for odd (figure-
0) turning numbers. Note that closed curves

in the plane are classified into regular homo-

topy classes according to their winding number [Whitney 1937]

while strips in R3
have only two (figure-8/0) regular homotopy

classes [Kauffman and Banchoff 1977].

Given a generic map f : M → R3
and a cycle γ in M , Def. 2.3

applies and we define the extrinsic Z2-valued predicate

qf (γ ) B

{
0 if Eq. (2) = −1 (figure-0)

1 if Eq. (2) = +1 (figure-8)
. (4)

2.2 Pinch Points and Almost Immersions
Given an immersion f : M → R3

the vertex star of every interior

vertex p ∈ V̊ is embedded. Letting γp denote the cycle formed by

the triangles incident to p, the local embedding property implies

qf (γp ) = 0.

Conversely, a generic map f may satisfy qf (γp ) = 0 for all p ∈ V̊
and not be an immersion. It can however be made into an immersion

after a suitable subdivision and small perturbation. (The need to

allow for such local modifications cannot be avoided since no triangle

mesh will always have enough resolution for whatever shape it is

required to form into.)

Consider a figure-0 vertex star which is not embedded (Fig. 5,

bottom left) and intersect it with a small sphere around the vertex.

The intersection is a spherical polygon regularly homotopic to a

small circle by assumption. If we perform this regular homotopy

on the sphere [Kauffman and Banchoff 1977], while simultaneously

shrinking the sphere, and finally cap off the small hole with a

disk, the moving curve sweeps out a surface that can replace the

non-immersed vertex star by an immersed disk (Fig. 5, bottom

middle/right). A suitable modification of the above construction can

ensure that the inserted immersed disk is still piecewise linear. This

leads us to:

Definition 2.4 (Almost Immersion). We call a generic map f : M →
R3

an almost immersion if every vertex star is figure-0.

From a practical viewpoint, almost immersed meshes are very

convenient. Testing whether a map f is really an immersion involves
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extensive collision detection at each vertex. On the other hand,

testing whether f is an almost immersion is straightforward (Eq. (2)).

Even better: an almost immersion will stay almost immersed under

a deformation so long as no triangle degenerates and all bending

angles stay away from π . If we compute such an almost regular
homotopy it becomes a proxy for a nearby regular homotopy living

on a finer scale. We just do not bother to increase the resolution by

subdivision.

pinch point

Fig. 5. After subdivision and a small perturbation, a vertex of a generic
triangle mesh (left column) either stays as a pinch point (top middle) or can
be made immersed (bottom middle; exploded view bottom right).

Conversely, a figure-8 vertex star is a significant obstacle. We call

such a vertex a pinch point (Fig. 5, top). By part (b) of Thm. 2.2 it is

impossible to resolve such a singularity by a local modification near

the vertex. Only a larger scale operation, canceling pinch points in

pairs, can make it possible to arrive at an immersion (Sec. 4).

3 DISCRETE SPIN STRUCTURE
In the previous section we relied on a given generic map f : M → R3

to define the figure-8/0 property of immersed cycles. When no map

is given and an immersion is to be found in the first place we

need an apparatus which lets us talk about the figure-8/0 property
intrinsically. Furthermore, to find an immersion in a prescribed
regular homotopy class we need to be able to specify the figure-8/0
property of all cycles γ inM (Thm. 2.2). In this section we will show

how to encode this information intrinsically.

We begin by mapping the tangent spaceTiM of each triangle i ∈ F
to the complex line via linear, orientation preserving isometries

ϕi : TiM → C. (5)

For two adjacent triangles i, j ∈ F the parallel transport of tangent
vectors fromTiM toTjM now amounts to multiplication with unitary

complex numbers ri j defined with respect to the common edge

tangent vector

ri jϕi (vi j ) = ϕ j (vi j ). (6)

The field r = (ri j )i j ∈E̊ describes the usual discrete Levi-Civita con-
nection on triangle meshes expressed with respect to the basis field
ϕ = (ϕi )i ∈F [Crane et al. 2010].

Using the notation of Sec. 2.1 we can also give an intrinsic defini-

tion of the discrete geodesic curvature κi j for the cycle γ

ri j exp(iκi j )ϕi (Ti ) = ϕ j (Tj ),

with Ti ∈ TiM the unit tangent between midpoints of successive

edges in γ . Cyclical substitution yields∏
i j ∈γ

ri j = exp

(
−i

∑
i j ∈γ

κi j
)
.

Returning to the surfaceM as a whole, and in anticipation of mapping

the abstract triangles into R3
, we will now express all complex

rotations as quaternionic rotations. Since a quaternionic rotation by

a complex number acts on the (j, k)-plane we map ϕi to this plane

through post-multiplication with j

ϕi j : TiM → Cj = Span{j, k} ⊂ R3.

In this way the tangent plane of every triangle is identified with the

(j, k)-plane in R3
and Eq. (6) reads as

τ jiϕi (vi j )jτji = ϕ j (vi j )j (7)

where τ ji = τi j B ±
√
ri j is defined only up to sign. In analogy to r ,

the intrinsic field τ = (τi j )i j ∈E̊ describes the discrete spin connection
with respect to the basis field ϕ.

We now exploit the ±-sign freedom to encode in the signs of τ
the regular homotopy class we wish to prescribe. In analogy to the

extrinsic Eq. (3) we use the sign of

exp

(
i
2

∑
i j ∈γ

κi j
) ∏
i j ∈γ

τi j = ±1 (8)

to encode the prescribed figure-8/0 property in the intrinsic Z2-valued

predicate

qτ (γ ) B

{
0 if Eq. (8) = −1 (figure-0)

1 if Eq. (8) = +1 (figure-8)
(9)

(cf. Eq. (4)).

Given the 2
|E̊ |

possible choices for signing τ , this appears to give

rise to a bewildering number of different qτ . However, many of these

sign choices define the same qτ . This gauge degree of freedom is

described by Z2-valued potentials defined on triangles. Consider

i ∈ F and flip the sign of τ on the interior edges incident to i to define
τ̃ then qτ (γ ) = qτ̃ (γ ) for every cycleγ . Hence if τ , τ̃ are equivalent, in

the sense that they differ in their signs by an exact (dual) Z2-valued

1-form, we will have qτ = qτ̃ . Conversely, the difference between

τ and τ̃ with qτ = qτ̃ will be the discrete derivative of a Z2-valued

function. This is proved in the same way as the familiar fact that a

real-valued 1-form, whose integral over all closed curves vanishes,

must be exact. Letting [τ ] denote the corresponding equivalence

class we define q[τ ] B qτ for any representative τ ∈ [τ ].
Together with the desire to produce immersions (Thm. 2.2 (b))

this leads to:

Definition 3.1 (Discrete Spin Structure). A discrete spin structure [τ ]
is an equivalence class of discrete spin connections τ with qτ (γp ) = 0

(figure-0) for all p ∈ V̊ .

That the set of discrete spin structures of a given surface is

not empty is proven in App. A, where it is shown that there are

exactly 2
β1

distinct discrete spin structures by constructing them

explicitly with the Tree/CoTree spanning tree algorithm [Dłotko

2012; Eppstein 2003; Erickson and Whittlesey 2005]. Here β1 is

the number of generators for the 1
st
homology, i.e., β1 = 2д for

a genus-д closed, orientable surface, and β1 = 2д + b − 1 if there
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are b boundary components. The fact that there are 2
β1

distinct

discrete spin structures matches the smooth setting [Atiyah 1971;

Lawson and Michelsohn 1990]. (We note that Def. 3.1 is compatible

with [Hoffmann and Ye 2018] where discrete spin structures are

used to study discrete Dirac operators.)

4 RIMMED IMMERSIONS
We now face a challenge. Suppose we are given (say, numerically)

a generic map f : M → R3
which may not (yet) be an almost

immersion in the prescribed (by [τ ]) regular homotopy class. How

should it be modified or deformed so as to be of the correct type?

As a first step we treat f as a surface with

additional subscale detail consisting of rims
(inset). A rim is an additional loop at an edge,

which switches the figure-8/0 property of any

closed strip crossing it. Our main theorem

(Thm. 4.2) then states that such rims can be

added so that the figure-8/0 property of all

closed strips is as prescribed by [τ ]. In partic-

ular, all vertex stars will be figure-0 and hence

almost immersed (Def. 2.4 & Fig. 6). Which

edges are rimmed will be encoded relative to τ by the signs of a unit

quaternion field λ (Def. 4.1) arising from the polar decomposition of

df .
To visualize the almost immersion a rimmed surface represents,

we only need to tag the appropriate edges and draw them accordingly.

But to fulfill on our goal of showing extrinsic shapes which reflect

intrinsic geometry, we want to reduce, hopefully to zero, the number

of rims through appropriate large scale deformation of f . This can
be accomplished through a variational Ansatz for λ (Sec. 4.2).

Fig. 6. Adding a rim ending at a figure-8 vertex (left; middle) resolves the
vertex into an almost immersed vertex (right).

4.1 Rim Bits
Given a generic map f we have, for all triangles i ∈ F , a linear

map dfi : TiM → R
3
of rank two which possesses a unique polar

decomposition
dfi (X ) = ωi (SiX )

where X ∈ TiM is a tangent vector, Si : TiM → TiM a positive,

self-adjoint linear map and ωi : TiM → R
3
an isometric map

ωi (X ) = λiϕi (X )jλi (10)

using a suitable unit quaternion λi determined only up to sign. With

this

dfi (X ) = λiϕi (SiX )jλi . (11)

Given the sign choices of τ , which encode the desired regular homo-

topy class, we now add rims to edges as described by the following

predicate:

Definition 4.1 (Rim Bits). For all interior edges ij ∈ E̊ we define a

Z2-valued predicate, the rim bit

s
τ ,λ
i j B

{
0 if ⟨λj ,τi jλi ⟩ > 0

1 if ⟨λj ,τi jλi ⟩ < 0

indicating whether τi jλi and λj are in the same (s
τ ,λ
i j = 0) hemi-

sphere of S3
. If not, an additional 360

◦
turn, realized by a rim,

is present. Note that for generic maps the case ⟨λj ,τi jλi ⟩ = 0 is

excluded by Def. 2.1 (2).

The following theorem states that the rim selection according

to sτ ,λ compensates for any discrepancy in figure-8/0 properties

induced by f versus the desired ones given by q[τ ]:

Theorem 4.2 (Rim Bits). Given a spin structure [τ ] onM , a generic
map f : M → R3, and an arbitrary choice of signs for λ in Eq. (11),
the figure-8/0 property of any cycle γ ∈ M under f and according to
the desired spin structure [τ ] are related as

qf (γ ) = q[τ ](γ ) +
∑
i j ∈γ
s
τ ,λ
i j (mod 2).

(For the proof see App. B.)

Def. 4.1 and Thm. 4.2 tell us that in order to produce a rimmed

surface in the desired regular homotopy class, the rimming of edges

(sτ ,λ = 1) depends on the signs of both τ and λ. We can exploit this

for practical purposes:

4.1.1 Distribution of Rims. Suppose we have made a particular

choice of signs for τ to represent a desired regular homotopy class.

Then we can use the sign freedom in λ to control the placement

of rim edges. For example, we may choose the signs of λ so that

sτ ,λ = 0 along a triangle spanning tree. By Thm. 4.2 this eliminates

all rims if f already belongs to the prescribed regular homotopy

class.

4.1.2 Spin Structures from Immersions. Suppose f is already an

immersion, then one can “read off” its spin structure as follows.

Perform the polar decomposition of df to get λ with signs chosen

arbitrarily. Then for each ij ∈ E̊ sign τi j so that s
τ ,λ
i j = 0. In that

case Thm. 4.2 states q[τ ] = qf and hence [τ ] is the spin structure

corresponding to the regular homotopy class of f .

4.2 Quaternion-Based Approaches
Every generic map f can be seen as an immersion of any regular

homotopy class by decorating it with rims. However, those rimmed

immersions that can convey an insightful extrinsic shape should only

require rims (sτ ,λ = 1) that are few and short (Fig. 7). Fortunately,

since the rim information sτ ,λ is present in the quaternion field λ, we
can reduce the total length of rims through a continuous variational

problem in λ. To this end consider the connection Dirichlet energy

E1(λ) =
1

2

∑
i j ∈E̊

wi j |λj − τi jλi |
2, (12)

for some given edge weightswi j . (Such energies also occur in the

context of angular synchronization though generally not on a 2-

manifold but more general graph structures [Singer 2011; Singer
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and Wu 2012].) Observing that

|λj − τi jλi |

{
<
√

2 if s
τ ,λ
i j = 0

>
√

2 if s
τ ,λ
i j = 1

using Def. 4.1 and |τi jλi | = |λj | = 1 we see that Eq. (12) is lower

bounded by the total length of rimmed edges.

Fig. 7. Unlike scattered isolated pinch points, a pair of pinched vertices
connected by a short rim (left) represents an immersion within a localized
perturbation and subdivision (right), much like an almost immersed vertex
(Fig. 5, bottom).

In Sec. 5 we introduce an energy for the isometric immersion

problem which is of the form Eq. (12). Minimizing it will significantly

reduce the number of rimmed edges and in practice often remove

all of them.

5 APPROACH TO ISOMETRIC IMMERSIONS
Wenow return to our original goal: finding discrete close-to-isometric

almost immersions when no initial map is provided. In this setting

the orientations λ are the fundamental variables which, together

with the spin structure [τ ], encode the correct immersion. Once the

orientations are found we can integrate the surface. For this the

orientations must satisfy an integrability condition which ensures

that neighboring triangles fit together. This integrability condition

is encoded in an energy whose minimization yields optimal λ.

5.1 Integrability Conditions
Define a generic isometric map ω = (ωi )i ∈F with ωi : TiM → R

3

given by

ωi (·) B λiϕi (·)jλi
as a function of the orientation field λ. For ω to realize a surface

f : M → R3
isometrically we must have df = ω and ω must satisfy

a local integrability condition

ωi (vi j ) = −ωj (vji ) (13)

at all interior edges ij ∈ E̊. In that case ω defines an embedded edge

vector field as a discrete R3
-valued 1-form (ve )e ∈E in the sense of

Discrete Exterior Calculus [Desbrun et al. 2008] with ve B ωi (ve ) for
each edge e incident to face i . If Eq. (13) holds on a simply-connected

M , we can construct a unique f : V → R3
(up to translation) so that

df (ve ) = ve

IfM is not simply-connected, we need e to be exact in addition to

satisfying Eq. (13) (App. D.2).

To turn Eq. (13) into a condition on λ substitute Eqs. (10) and (7)

while using the shorthand

zi j B ℓ
−1

i j ϕi (vi j ) (14)

to find the equivalent statement(
λj (τi jλi )

)
(zji j)

(
λj (τi jλi )

)
= zji j.

Thus λj (τi jλi ) must be a rotation around the zji j axis. It has an
explicit form in

λj (τi jλi ) = (−1)
s
τ ,λ
i j

exp

( αi j
2
zji j

)
(15)

with αi j = α ji ∈ (−π ,π ) the bending angle between incident

triangle normals as before (App. C.1). Since the bending angles are

not constrained we express this condition by demanding that

λj (τi jλi ) ∈ Span{1, zji j} (16)

where quaternions are understood as vectors in R4
. It is not difficult

to see (App. C.2) that this condition is equivalent to

λj − τi jλi ∈ Span{zji jµ ji } (17)

with µ ji ∈ S
3
the midframe between τi jλi and λj

µ ji B
τi jλi+λj
|τi jλi+λj |

. (18)

Geometrically, µ ji is the average of the frames on i and j represented
as a quaternion in the basis of j , a quantitywhich satisfies τi j µi j = µ ji
since τji = τ i j and |τi j | = 1.

5.2 Formulation of an Energy
In this section we formulate an energy based on the integrability

of λ, using Eq. (17), which states that the parallel transported finite
difference λj − τi jλi , as a vector in H ≡ R4

, should be small in the

orthogonal complement of Span{zji jµ ji }.
To test this, a natural choice for an orthonormal basis of H at

ij ∈ E̊ for given λi and λj , is

{µ ji , zji jµ ji , iµ ji , izji jµ ji }. (19)

Using this basis, and four nonnegative dimensionless global param-

eters (ϵ0, ϵ1, ϵ2, ϵ3) C ϵ , we define an anisotropic norm | · |i j,ϵ for

q ∈ H

|q |2i j,ϵ = ϵ0⟨µ ji ,q⟩
2+ ϵ1⟨zji jµ ji ,q⟩2+ ϵ2⟨iµ ji ,q⟩2+ ϵ3⟨izji jµ ji ,q⟩2,

and use it to define our energy for λ with |λi | = 1

Eϵ (λ) B
1

2

∑
i j ∈E̊

wi j |λj − τi jλi |
2

i j,ϵ (20)

wherewi j are weights for dual edges accounting for the metric. Note

that Eq. (20) is identical to Eq. (12) except for weighting the four

components of λj−τi jλi individually. Hence, minimization of Eq. (20)

reduces the number of rim edges while enforcing integrability of λ.

5.2.1 Geometric Interpretation. Each component of the norm

| · |i j,ϵ in Eq. (20) measures a geometrically meaningful mode of the

local strain arising from the difference of the frames λj − τi jλi . To
see this, let λj (τi jλi ) = exp

( θ
2
v
)
for a suitably chosen unit rotation

axis v ∈ ImH and rotation angle θ . In these variables an argument

similar to the one used in App. C.2 gives λj − τi jλi ∈ Span{vµ ji }.
Therefore | · |i j,ϵ measures the contributions of λj (τi jλi ) along the

respective axes: zji j (shared edge vector), i (normal vector), and

izji j (dual of shared edge vector). Specifically the symmetric

⟨zji jµ ji , λj − τi jλi ⟩ C ζi j = ζji .
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measures bending. Rotation around the normal is measured by the

anti-symmetric

⟨iµ ji , λj − τi jλi ⟩ C ηi j = −ηji ,

with zero indicating that parallel transport of tangent vectors is

correct, while the symmetric

⟨izji jµ ji , λj − τi jλi ⟩ C σi j = σji

captures geodesic torsion, i.e., rotation around the dual edge.

The first term, associated with ϵ0, corresponding to the “length

axis” 1, is missing here since (λj − τi jλi )⊥µ ji . In our numerical

setting though we will include the length axis because we are using

a fractional step scheme for the energy minimization.

Defining the L2
energy of a quantity ζ = (ζi j )i j ∈E̊ via ∥ζ ∥2 =∑

i j ∈E̊ wi j |ζi j |
2
, we can rewrite Eq. (20) as an elastic energy

Eϵ (λ) =
ϵ1

2
∥ζ ∥2 + ϵ2

2
∥η∥2 + ϵ3

2
∥σ ∥2.

With ϵ1...3 we can now control specific geometric aspects of the

minimization. For example, when in-plane rotation is much more

heavily penalized than bending and torsion, ϵ2 ≫ ϵ3 = ϵ1, a mini-

mizer of Eϵ will describe orientations of triangles that tend to induce

a parallel transport of tangent vectors corresponding to the Levi-

Civita connection. This alone implies that the resulting orientation

field is close to locally integrable up to some constant rotation about

the normals, due to the invariance of Eϵ under λ 7→ exp(ic)λ for c a
global constant.

We use a strategy of scheduling the parameter ϵ in stages. Early

on we let ϵ2 ≫ ϵ3 = ϵ1 to fix the normal vectors and relative

orientations. Later we fix the remaining global normal rotation by

breaking the symmetry λ 7→ exp(ic)λ via ϵ2 ≫ ϵ3 ≫ ϵ1. Finally we

let ϵ1 = 0 to remove the bending regularization entirely.

5.3 Minimization
To find an optimal λ, we minimize Eq. (20) iteratively with a sequence

of stiffness parameters ϵ .

Algorithm 1Minimization

Input: ϵ (1),ϵ (2),ϵ (3), . . . with ϵ
(n)
1
→ 0; λ(0);

1: for n = 1, 2, 3, . . . do
2: λ(n) ← argminλ Eϵ (n) (λ) with initial guess λ(n−1)

;

3: end for

Generally we let λ(0) be random and schedule ϵ (n) in four itera-

tions according to the considerations of Sec. 5.2.1

ϵ (1) = (1, 1, 1, 1), ϵ (2) = (1, 0.1, 1, 0.1),

ϵ (3) = (1, 0.01, 1, 0.1), ϵ (4) = (1, 0, 1, 0.1).
(21)

A detailed description of our numerical implementation of this

algorithm can be found in App. D.

5.4 Computing Vertex Positions
Having found a minimizer λ representing ω which is nearly inte-

grable (unless Eϵ = 0) we construct the averaged embedded edge

vector field (v̂e )e ∈E
v̂i j B 1

2
(ωi (vi j ) − ωj (vji ))

for ij ∈ E̊ and v̂e B ωi (ve ) for each boundary edge e incident

to face i . From v̂ we compute the vertex position f by solving

df (ve ) = v̂e , e ∈ E, in the least-squares sense, which amounts to a

Poisson problem (App. D.1).

Before λ is optimal, f is likely not yet an almost immersion and

we need to treat f as a rimmed immersion. Following Sec. 4.1, we

apply polar decomposition to df to obtain λ∗ (Eq. (11)) with signs

chosen so that ⟨λ∗i , λi ⟩ > 0 for each i ∈ F and visualize the rim bits

sτ ,λ
∗

of λ∗.

5.4.1 Feedback from Vertex Positions. In the subiterations for

minimizing Eϵ in Alg. 1 we can optionally feed back λ∗ to λ, i.e.,
replace λ by λ∗ or a convex combination of both (App. D.2), to

incorporate extrinsic constraints on vertex positions, for example,

point constraints. It also improves the optimization of Eϵ generally

(Fig. 8) and is useful when dealing with non-simply-connected

surfaces.

5.5 Summary
Putting all the pieces together the entire algorithm, with all “subrou-

tine” references, is given by:

Algorithm 2 Algorithm overview

Input: Triangle mesh {V ,E, F }; edge lengths (ℓe )e ∈E ; ▷ Sec. 1.3

1: Compute intrinsic quantities (App. D), edge weights (wi j )i j ∈E̊ ;

2: Build Levi-Civita connection (ϕi )i ∈F and (ri j )i j ∈E̊ ; ▷ Eq. (5, 6)

3: Spin connection τi j ← ±
√
ri j with arbitrary sign; ▷ Eq. (7)

4: Fix the signs of τ so that qτ (Eq. (9)) satisfies Def. 3.1 ;

▷ Use Alg. 3, or Sec. 4.1.2 if an initial immersion f is available.

5: Optional: switch regular homotopy class;

▷ Flip signs of τ along generators found by Alg. 4.

6: Initialize λ; ▷ randomly or by Eq. (11) if f is given.

7: Evolve λ by Alg. 1;

▷ Use either Alg. 5, Alg. 6, or Alg. 8 which invokes Sec. 5.4.1.

8: f ← compute vertex positions; ▷ Sec. 5.4, Alg. 7

9: λ∗ ← polar-decompose df (Eq. (11)) with ⟨λ∗i , λi ⟩ > 0; ▷ Sec. 5.4

Output: Vertex positions f and rim bits sτ ,λ
∗

.

6 RESULTS AND APPLICATIONS
We have implemented Alg. 2 (Sec. 5.5) in Houdini 16 by SideFX

software, using SciPy [Jones et al. 2001] for the numerical solvers.

Complete source code is included. Details of the implementation

can be found in App. D. Here we report on experiments we per-

formed with our implementation. All surfaces we produce are almost

immersions possibly rimmed in the sense of Sec. 4. The energy mini-

mization generally removes all rims, though if some are left they are

typically no longer than one or two edges (Fig. 7).

6.0.1 Performance. For the minimization of Eϵ in Alg. 2, our

experiments used gradient descent (Alg. 5), except for Fig. 16, which

used a (quasi-)Newton’s method (Alg. 6). (While Newton’s method

requires fewer iterations, each iteration is substantially more ex-

pensive, often making Newton’s method slower overall.) Gradient

descent typically takes 10–40 subiterations, each being dominated

by the solution of a sparse linear system of size |F |. We used the

ACM Transactions on Graphics, Vol. 37, No. 4, Article 63. Publication date: August 2018.



Shape from Metric • 63:9

conjugate gradient method without preconditioning, taking about 5

seconds for a |F | ≈ 29k model on a MacBook Pro with a 2.5 GHz

Intel Core i7 Processor. Fig. 8 shows a typical isometry error plot as

a function of iteration count. In particular it indicates that the metric

error decreases as the minimizer decreases the energy (Sec. 5.2.1).
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Fig. 8. L2 relative metric error and its distribution on the surface at each
stage of Alg. 2 with and without the additional treatment of Sec. 5.4.1.
ϵ is scheduled according to Eq. (21) (four labeled subiteration intervals).
Algorithm input are Stanford Bunny edge lengths and a random λ(0).

Before continuing with more examples we first compare our

method to other possible approaches motivated by the related work

in algorithms (Sec. 1.2.2).

6.1 Comparison of Methods
How important is the use of quaternions to avoid pinch singularities

in practice? To elucidate this question we consider several alternative

approaches.

Fig. 9. An arbitrarily deformed sphere (left) and nearby surfaces isometric
to the round sphere (middle & right). A method based on minimizing
membrane energy (middle) produces acceptable metric fidelity (1% L2 error),
but offers no tendency towards immersions (38 scattered pinch points shown
in red). Our method (right) achieves metric fidelity (0.6% L2 error) and also
approaches an immersion (2 pinch points connected by a short rim).

One set of approaches does not use any orientations at all and

instead produces close-to-isometric surface realizations by minimiz-

ing the metric error, i.e., minimizing an elastic energy, generally

regularized with a decreasing bending energy [Boscaini et al. 2015;

Isenburg et al. 2001] (and similarly [Bouaziz et al. 2012; Chao et al.

2010; Fröhlich and Botsch 2011; Panozzo et al. 2014]). In our study

we initialized the algorithm with random data since we cannot in

general rely on some known nearby immersion.

While these methods produce close-to-isometric surface realiza-

tions, most of the realizations have pinch points (Fig. 9, middle) even

after fine tuning bending regularization (Fig. 10, right). Contrast this

with the remaining pinch points from our method, if any, which

typically come in pairs connected by short rims (Fig. 9, right) that

can be removed easily (Fig. 7).

Fig. 10. Other algorithms often get stuck in local minima with pinch points.
Using themetric of the torus on the left, themiddle shows a surface computed
with an SO(3)-based approach inspired by [Wang et al. 2012] (0.9% L2

error), while the right shows the result of minimizing the length strain
energy [Boscaini et al. 2015; Isenburg et al. 2001] (2% L2 error).

Another class of potentially applicable techniques uses rigid

triangles with orientations in the form of 3 × 3 rotation matrices

(SO(3)) [Botsch et al. 2006; Wang et al. 2012]. To understand how

much the “blindness” of rotation matrices to pinch singularities

matters in practice, we replace the quaternions representing triangle

orientations by SO(3) matrices in our implementation. This variant

closely resembles [Wang et al. 2012], who report that in the presence

of (nearly) compatible bending data (satisfying the discrete Gauss-

Codazzi equations [Lipman et al. 2005]) a surface can be found

reliably with a single linear solve. Since we assume no bending data,

we minimize their non-linear energy with gradient descent. This

produces isometric surface realizations with less than 1% L2
error in

the edge lengths. However, control over the regular homotopy class

and any energetic incentive towards immersion are lost (Fig. 10,

middle).

Fig. 11. Our algorithm treats the pinched surface in Fig. 10 (middle) as a
rimmed immersion (left), and finds close-to-isometric almost immersion by
energetically resolving the rims (left to right).

For both classes of algorithms the results are close to isometric

and the orientations almost integrable, while pinch singularities
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Table 1. Statistics of relative L2 length error, mesh size, and number of rims.

Length error ( |V |, |E |, |F |) # rims

Fig. 12 1.2% (4002, 12000, 8000) 0

Fig. 13 2.13% (9120, 27120, 18000) 0

Fig. 14 1.2%, 6.5%, 1.65%, 3.6% (3000, 9000, 6000) 0, 0, 0, 14

Fig. 15 5.24% (3087, 9261, 6174) 2

Fig. 16 7% (10000, 29219, 19220) 0

Fig. 17 1.15% (4147, 12447, 8298) 1

Fig. 18 0.7% (5807, 17417, 11608) 8

Fig. 19 2.4% (5807, 17417, 11608) 4

remain (Fig. 10, middle & right). Our quaternion based algorithm

though does not treat these as local minima and instead regards them

as rimmed surfaces with high energy (Sec. 4.2). For example, starting

with the pinched surfaces in Fig. 10 (middle) our algorithm evolves

it into a close-to-isometric almost immersions with a prescribed

regular homotopy class (Fig. 11)

6.2 Surfaces with Constant Curvature
We now demonstrate our method by finding close-to-isometric

almost immersions for the simplest surfaces, those with constant

curvature.

Fig. 12. An isometrically deflated soccer ball following art direction. See the
video at 00:08.

6.2.1 Round Sphere. The only orientable closed surface with

constant positive curvature K = 1 is the round sphere. If we run our

algorithm with initially high but then decreasing regularization, we

always find the standard immersion. However, we can also start with

a user provided initial vertex positions, run our algorithm with no

regularization (ϵ1 = 0) to arrive at a nearby close-to-isometric almost

immersion (Fig. 12). In the same way we can produce art-directed

close-to-isometric almost immersions of any surface (Fig. 13).

Fig. 13. A close-to-isometric immersion (right) of a flat cylinder (left) near
a user-provided shape (middle). The spin structure was taken from the
cylinder on the left. See the video at 02:02.

6.2.2 Flat Cylinders. Point constraints can be incorporated in our
algorithm by including the step described in Sec. 5.4.1 and App. D.2

in the minimization loop, implementing the point constraints in the

Poisson problem for computing vertex positions. For example, in

Fig. 13 the rigid top and bottom of the soda can provide boundary

constraints for the (intrinsically flat) cylindrical piece.

6.2.3 Flat Tori. A metric with constant curvature on a torus

is necessarily flat. For a given flat torus our algorithm can find

close-to-isometric almost immersions in each of the four regular

homotopy classes (Fig. 14), which we deliberately select with the

Tree/Co-Tree algorithm (App. A).

Fig. 14. Four close-to-isometric almost immersions of a flat torus of differing
regular homotopy type. These cannot be deformed into one another while
staying immersed.

6.2.4 Visualizing Metric Flows. Given any smooth surface with a

metric, it is always possible to scale the metric conformally to arrive

at a metric with constant curvature. The so-called Ricci flow

Ûд = −Kд (22)

with K denoting the Gaussian curvature, achieves this by flowing

the original metric д continuously towards the uniformization met-

ric [Zhang et al. 2015]. Since the metric is manipulated directly there

are no natural immersions associated with the flow except in the

case of a topological sphere [Crane et al. 2013; Kazhdan et al. 2012].

Our algorithm allows us to visualize the entire flow through the

evolution of corresponding immersions with the final surface in

Fig. 15 a flat torus.

Fig. 15. Ricci flow on a torus visualized via close-to-isometric almost immer-
sions. See the video at 01:01.

6.2.5 Hyperbolic Disk. We now turn to surfaces with constant

negative curvature. Our algorithm can find close-to-isometric almost

immersions of large portions of the hyperbolic plane (Fig. 16).
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Fig. 16. A close-to-isometric immersion of a large disk (black line) in the
hyperbolic plane. See the video at 00:35.

6.2.6 Genus Two Hyperbolic Surfaces. On a compact surface

of genus 2, Ricci flow gives us a conformally equivalent metric

with curvature K = −1. Here a polyhedral surface of genus 2 with

all vertices having negative discrete curvature [Barros et al. 2011]

(Fig. 17, left) is subdivided piecewise linearly, given a conformally

equivalent metric with constant Gaussian curvature K = −1, and

realized close to isometric in the same regular homotopy class (right).

Fig. 17. Left: a polyhedron with negative curvature at all vertices; right: the
subdivided polyhedron with constant negative curvature immersed close to
isometric.

Quite often the overall geometry of the final uniformized metric

is already clearly visible when a small amount of regularization is

still present in the energy minimization (Fig. 18).

Fig. 18. The conformally equivalent metric with constant negative curvature
on the Double Duck, realized with a small amount of bending regularization.
The original surface served as initial data. See the video at 01:28.

While Fig. 18 used the original Double Duck as its initial surface,

using random initial data results in a different, though still regularly

homotopic, close-to-isometric almost immersion (Fig. 19).

Fig. 19. Progression of our energy minimization with the same hyperbolic
metric as in Fig. 18 starting with random initial data (left) and ending with
an L2-error for the metric of 2.13% (right). See the video at 01:44.

6.3 Bunny Eversion
So far the regularization term (ϵ1) in the energy drives all bend-

ing angles zero. If, for some reason, we are given specific target

bending angles α̂i j , we can incorporate them by modifying the spin

connection, replacing τi j with

τ̃i j B exp

( α̂i j
2
zji j

)
τi j ,

which amounts to re-gauging the measurement of bending in Eq. (15)

λj (τ̃i jλi ) = (−1)
s
τ ,λ
i j

exp

( αi j−α̂i j
2

zji j
)
.

If metric and bending angles are taking from an existing surface, for

example a bunny, our algorithm will reliably reconstruct this surface.
Take now as initial surface for the energy minimization a reflected

bunny, i.e., a bunny turned inside out, and put a high penalty on

deviation from the original metric. Using a small time step we then

witness a close-to-isometric eversion of the bunny (Figs. 1 & 20).
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Fig. 20. Statistics of the length error and rim number during the process
of turning the Stanford bunny inside out. Model size ( |V |, |E |, |F |) =
(14290, 42684, 28576).

Note. While we understand how to interpret each rimmed surface

from the time discretized sequence as a shorthand for an actual

immersion (Sec. 4), it is less clear how they connect in continuous

time. In principle there are underlying regular homotopies that

interpolate these almost immersions. However, a simple and system-

atic visualization of these rim interactions, transforming one into
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another, between frames as yet needs to be addressed and is left to

future work.

While this simple approach to a close-to-isometric immersion

works well for the Bunny, we emphasize that it is not a general

isometric eversion procedure since we rely on energy descent for a

discrete bending energy [Bridson et al. 2003; Grinspun et al. 2003],

while keeping the isometry part of the energy small. For a round

sphere, for example, it is known though that somewhere along every

eversion the Willmore energy is larger than 16π [Li and Yau 1982;

Max and Banchoff 1981]. Using this one can show that an eversion

cannot be produced by simple bending energy descent.

7 CONCLUSION
In this paper we presented a discrete theory for immersions of

triangle meshes into R3
and applied it to the isometric immersion

problem. Quaternions and their transport are the key to encoding the

regular homotopy class information and to ensure that deformations

stay immersed. We introduce the notion of a rimmed surface which

is guaranteed to be in the correct regular homotopy class. Our

variational approach based on a connection Dirichlet energy allows

us to resolve these rims (unless the mesh is much too coarse) through

global deformations while simultaneously finding optimal shapes

representing the intrinsic geometry.

We are hopeful that this new theory characterizing immersions in

the form of rimmed surfaces will find application in many areas of

Geometry Processing. For example, our quaternionic surface descrip-

tions are close relatives of (conformal) spin transformations [Crane

et al. 2011], suggesting that our method of close-to-isometric immer-

sions could be extended to conformally equivalent immersions. The

physical interpretation of our energy suggests that our approach

can form the basis for physical modeling of cloth, thin-shells, and

related materials, as well as physical-metaphor-based geometric

editing. Our method also has potential in applications that use shape

space representations. While compatible metric and bending data are

required for exact reconstruction of surfaces we find that the metric

data alone goes surprisingly far in recovering particular shapes.

Additionally our method can, if available, incorporate bending data,

which opens up applications that require or manipulate both.
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A SELECTING A SPIN STRUCTURE
A discrete spin structure [τ ] requires qτ (γp ) = 0 for every interior

vertex (Def. 3.1). Eq. (8) thus constrains the signs of τ to satisfy∏
i j ∈γp

τi j = − exp

(
− i

2

∑
i j ∈γp

κi j
)
= exp

( i
2
Ωp

)
(23)

for all p ∈ V̊ with Ωp denoting the usual discrete Gaussian curvature

(excess angle) at p. Can this be achieved, and if so, how?

p

p̃
Γ

p

Given an arbitrary choice of sign for τ ,
Eq. (23) is either satisfied (figure-0) or has the
wrong sign (figure-8), taking the general form∏

i j ∈γp

τi j = (−1)qτ (γp ) exp

( i
2
Ωp

)
. (24)

Let p ∈ V be a figure-8 vertex. Suppose p̃ is

another figure-8 vertex connected top by a path
Γ of primal edges. Flipping the sign of τ on all

edges in Γ annihilates both figure-8 vertices

since this introduces an odd number of sign

flips in

∏
i j ∈γpτi j and

∏
i j ∈γp̃τi j and an even

number for all other vertices along the path. IfM has a boundary,

flipping the sign of τ along a path connecting p to the boundary

turns p figure-0. Hence all figure-8 vertices can be removed so long

as their number is even forM without boundary. LetM be without

boundary. Taking the product of the left-hand side of Eq. (24) over all

vertices gives +1. Taking the product over all right-hand sides gives

(−1)
∑
p∈V qτ (γp )

exp(iπ χ ) for χ = 2(1−д) the Euler characteristic of
M . We conclude that the number of figure-8 vertices

∑
p∈V qτ (γp ) is

even.

Using a vertex spanning tree, rooted at the boundary (if applicable),

all figure-8 vertices can be removed by flipping the sign of τ on

every interior edge in the tree which has an odd number of figure-8
descendents (Alg. 3).

Algorithm 3 Spin structure

Input: A spin connection τ .
Output: A spin connection τ with qτ (γp ) = 0 for all p ∈ V̊ .

1: Compute qτ (γp ) for each p ∈ V̊ .

2: Let T be a vertex spanning tree rooted at a boundary (if applica-

ble) vertex.

3: From the leaves to the root, aggregate for each e of T the sum

se of qτ (γp ) (mod 2) over the descendents of the edge.

4: For each e ∈ T ∩ E̊, τe ← (−1)se τe .

This argument establishes that spin structures, i.e., τ with qτ (γp ) =
0 for all p ∈ V̊ exist and at least one can be found effectively. Note

that flipping the sign of τ along any closed path Γ or any path Γ
closed relative to ∂M (∂Γ ⊂ ∂M) still yields a spin structure but

possibly a different one.

Γ

γ

More precisely, for Γ a relatively closed path,

flipping the sign of τ along Γ changes the spin

structure if and only if Γ is a path with a non-

trivial 1
st relative homology H1(M, ∂M) (a path

that does not enclose a subregion of M by

adding only boundary edges to the path). In

that case Γ crosses a closed triangle strip γ of a

nontrivial 1
st
homology of the dual meshM∗ (inset). Hence switching

the sign of τ along Γ controls the value of qτ (γ ). Using the Poincaré-

Lefschetz duality H1(M, ∂M) � H1(M
∗), switching the sign of τ

along each generator (Γ1, . . . , Γβ1
) forH1(M, ∂M) effectively enumer-

ates all 2
β1

combinations of values of (qτ (γ1), . . . ,qτ (γβ1
)) ∈ (Z2)

β1

where (γ1, . . . ,γβ1
) is a set of generators of H1(M

∗).

To find a set of generators (Γ1, . . . , Γβ1
) of the relative homology

H1(M, ∂M), we use the Tree/Co-Tree algorithm [Eppstein 2003;

Erickson and Whittlesey 2005] in the variant that can deal with

boundaries [Dłotko 2012] (Alg. 4).

Algorithm 4 Generators for the 1
st
relative homology.

1: Let the Co-Tree T ∗ ⊂ E∗ be a triangle (dual) spanning tree.
2: If ∂M , ∅ let b ∈ E \ E̊, and v0 ∈ V \ V̊ in the same boundary

component as b. Else pick any v0 ∈ V .

3: Let the Tree T ⊂ (E \ b \ (T ∗)∗) be a spanning tree rooted at v0.

4: LetG = E \ (b ∪T ∪ (T ∗)∗). ▷ |G | = β1 = 2д +max{|∂M | − 1, 0}.

5: k = 0; ▷ Counter

6: for e ∈ G do
7: k ← k + 1;

8: if e ∈ E̊ then
9: Let Γk be the unique cycle in {e} ∪T .
10: else
11: Let Γk be a path in T from src(e) or dst(e) to v0.

12: end if
13: end for
Output: (Γ1, . . . , Γβ1

) is a set of generators for H1(M, ∂M).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 63. Publication date: August 2018.

https://www.crcpress.com/Turning-a-Sphere-Inside-Out-DVD/Max/p/book/9781466553941
https://doi.org/10.2307/1969840
https://doi.org/10.1145/2601097.2601179
https://doi.org/10.1145/2601097.2601179
https://doi.org/10.1016/0040-9383(85)90013-8
https://books.google.com/books/about/Visualizing_Mathematics_with_3D_Printing.html?id=E1C4DAAAQBAJ
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-83.html
https://doi.org/10.1016/j.acha.2010.02.001
https://doi.org/10.1016/j.acha.2010.02.001
https://doi.org/10.1002/cpa.21395
https://doi.org/10.1002/cpa.21395
https://doi.org/10.2307/1993205
https://doi.org/10.2312/SGP/SGP07/109-116
https://doi.org/10.1111/j.1467-8659.2012.03153.x
https://doi.org/10.1111/j.1467-8659.2012.03153.x
http://eudml.org/doc/88656
https://doi.org/10.1111/j.1467-8659.2009.01600.x
https://doi.org/10.1111/j.1467-8659.2009.01600.x
https://doi.org/10.1007/s11390-015-1548-8
https://doi.org/10.1007/s11390-015-1548-8


63:14 • Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder

B PROOF OF THM. 4.2
To prove Thm. 4.2 we proceed in stages. Given an isometric generic

map f , App. B.1 establishes that any γ has the correct figure-8/0
property as long as we account for the rim bits (Def. 4.1) along γ .
Next (App. B.2) we show that neither the figure-8/0 property nor the

rim bits depend on the metric. This then allows us to conclude that a

not necessarily isometric map is still in the correct regular homotopy

class defined with respect to the intended metric (App. B.3).

B.1 Spin Gauss-Bonnet Theorem
We begin with considering a single triangle strip mapped isometri-

cally into R3
by a generic map f . That is, on each triangle i the polar

decomposition Eq. (11) is an isometric map dfi (X ) = λiϕi (X )jλi .

Lemma B.1 (Spin Gauss-Bonnet Theorem). LetM be a closed
triangle strip with a metric, and let γ be the periodic ordered sequence
of shared edges between triangles. Following Sec. 3 let τ be a discrete
spin connection defined over γ . Suppose f : M → R3 is an isometric
generic map of the strip with

dfi (X ) = λiϕi (X )jλi

for some unit quaternions λi . Then

qf (γ ) = qτ (γ ) +
∑
e ∈γ
s
τ ,λ
e (mod 2). (25)

Proof. Without loss of generality we let the face indices along

the triangle strip be the ordered sequence (0, 1, . . . ,m − 1) hence

γ = (e0, . . . , em−1) = (e0,1, . . . , em−1,0) with indices taken modulo-

m.

Recall Def. 2.3 and Eq. (2)

(−1)qf (γ )+1 = q0,1 · · ·qm−1,0 (26)

where each qi,i+1 is given in terms of the bending angle and geodesic

curvature, αi,i+1, κi,i+1 ∈ (−π ,π ) (cf. Eq. (1))

qi,i+1 = exp

(
−
κi,i+1

2
ni
)

exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
. (27)

Since αi,i+1 is the angle between neighboring triangle normals

ni+1 = exp

( αi,i+1

2

vi,i+1

|vi,i+1 |

)
ni exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
=⇒ exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
ni+1 = ni exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
,

and therefore

exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
exp

(
−
κi,i+1

2
ni+1

)
= exp

(
−
κi,i+1

2
ni
)

exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
. (28)

Returning to the product of Eq. (26), we substitute each qi,i+1 from

Eq. (27) and repeatedly apply Eq. (28) to “push” the factors involving

κi,i+1 to the left

(−1)qf (γ )+1 =
(m−1∏
i=0

exp

(
−
κi,i+1

2
n0

) ) (m−1∏
i=0

exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

) )
(29)

where the symbol

∏m−1

i=0
qi represents the ordered productq0 · · ·qm−1.

Since f is isometric, the frame represented by λ is integrable (Sec. 5.1)

and Eq. (15) applies, from which we find

exp

(
−
αi,i+1

2

vi,i+1

|vi,i+1 |

)
= λi+1 exp

( αi,i+1

2
zi+1,i j

)
λi+1

= (−1)
s
τ ,λ
i,i+1λi+1λi+1(τi,i+1λi )λi+1

= (−1)
s
τ ,λ
i,i+1λiτ i,i+1λi+1

allowing us to collapse Eq. (29) into

(−1)qf (γ )+1 = (−1)
∑
e∈γ s

τ ,λ
e

(m−1∏
i=0

exp

(
−
κi,i+1

2
n0

) )
λ0

(m−1∏
i=0

τ i,i+1

)
λ0

= (−1)
∑
e∈γ s

τ ,λ
e λ0 exp

(
− i

2

m−1∑
i=0

κi,i+1

) (m−1∏
i=0

τ i,i+1

)
λ0

using

∏m−1

i=0
exp

(
−
κi,i+1

2
n0

)
= λ0 exp

(
− i

2

∑m−1

i=0
κi,i+1

)
λ0. Finally,

substituting the definition of qτ (γ ) (Eq. (8)), we arrive at

(−1)qf (γ )+1 = (−1)
∑
e∈γ s

τ ,λ
e λ0(−1)qτ (γ )+1λ0

= (−1)
qτ (γ )+1+

∑
e∈γ s

τ ,λ
e

which yields our claim (Eq. (25)). □

B.2 Metric Independence
Though the construction of a spin connection τ in Sec. 3 relies on a

metric, the resulting qτ is a topological quantity independent of the
metric, as we will show in this section.

SupposeM is endowed with two different discrete metrics ℓ and ˜ℓ.

For ℓ, choose a basis field ϕ (Eq. (5)) and let τ be a prescribed discrete

spin connection with respect to ϕ. Now let
˜ϕ be a basis field isometric

with respect to
˜ℓ, defined uniquely by requiring that it is related to ϕ

through self-adjoint, positive linear maps Si : TiM → TiM satisfying

˜ϕi (X ) = ϕi (SiX ) for X ∈ TiM and all i ∈ F .
For ij ∈ E̊ define βi j ∈ (−

π
2
, π

2
) to be the angle measuring the

deviation of
˜ϕi (vi j ) from ϕi (vi j )

˜ϕi (vi j )
| ˜ϕi (vi j ) |

= exp(iβi j )
ϕi (vi j )
|ϕi (vi j ) |

. (30)

That βi j can be chosen in (− π
2
, π

2
) follows from the isometry of

the ϕi and the positive definiteness of the Si using the real inner

product on C ≡ R2
:

⟨ϕi (vi j ), ˜ϕi (vi j )⟩ = ⟨ϕi (vi j ),ϕi (Sivi j )⟩ = ⟨vi j , Sivi j ⟩TiM > 0.

Substituting Eq. (6) in Eq. (30) we find that the parallel transports r

and r̃ arising from the choice of basis fields ϕ resp.
˜ϕ are related as

r̃i j = exp

(
i(βji − βi j )

)
ri j , (31)

which in turn determines τ̃ up to sign. To choose this sign consis-

tently we define

τ̃i j B exp

( i
2
(βji − βi j )

)
τi j (32)

and get:

Lemma B.2. qτ̃ (γ ) = qτ (γ ) for every closed triangle strip γ inM .

Proof. Let γ be an arbitrary closed triangle strip, and for the sake

of the proof label the triangles along the strip by (0, 1, . . . ,m − 1).
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Using Eq. (8), qτ resp. qτ̃ are given by

(−1)qτ +1 = exp

(
i
2

m−1∑
i=0

κi,i+1

) m−1∏
i=0

τi,i+1 (33a)

(−1)qτ̃ +1 = exp

(
i
2

m−1∑
i=0

κ̃i,i+1

) m−1∏
i=0

τ̃i,i+1 (33b)

involving the total geodesic curvatures

∑m−1

i=0
κi,i+1 resp.

∑m−1

i=0
κ̃i,i+1

which depend on the metric. To relate the two total geodesic curva-

tures we use an alternate representation

κi−1,i
δi

δi+1

m−1∑
i=0

κi,i+1 =

m−1∑
i=0

δi

where δi , at each triangle i in the strip, is the

angle between the edges shared by the previous

and the next triangle

δi B arg

(
−
ϕi (vi,i+1)

ϕi (vi,i−1)

)
∈ (−π ,π ).

In the
˜ℓ metric, using Eq. (30), these interior angles are given by

˜δi = arg

(
−

˜ϕi (vi,i+1)

˜ϕi (vi,i−1)

)
= arg

(
− exp

(
i(βi,i+1 − βi,i−1)

) ϕi (vi,i+1)

ϕi (vi,i−1)

)
.

(34)

Since ϕ and
˜ϕ both preserve orientation, δi and ˜δi share the same

sign. Together with βi,i+1 − βi,i−1 ∈ (−π ,π ) (since βi,i+1, βi,i−1 ∈

(− π
2
, π

2
)) this determines the branch for Eq. (34) leading us to con-

clude

˜δi = δi + βi,i+1 − βi,i−1,

and hence

m−1∑
i=0

κ̃i,i+1 =

m−1∑
i=0

˜δi =
m−1∑
i=0

(δi + βi,i+1 − βi,i−1)

=

m−1∑
i=0

κi,i+1 +

m−1∑
i=0

(βi,i+1 − βi+1,i ). (35)

The proof is now completed by substituting Eqs. (32) and (35) into

Eq. (33b) and noting its equality to Eq. (33a). □

Lemma B.3. Given any unit quaternion field λ and Eq. (32)

sgn⟨λj , τ̃i jλi ⟩ = sgn⟨λj ,τi jλi ⟩

for all ij ∈ E̊. Hence, whenever both rim bits are defined (Sec. 4.1), i.e.,
⟨λj ,τi jλi ⟩ , 0 and ⟨λj , τ̃i jλi ⟩ , 0

s
τ ,λ
i j = s

τ̃ ,λ
i j .

Proof. Eq. (32) gives

⟨λj , τ̃i jλi ⟩ = cos

( βji−βi j
2

)
⟨λj ,τi jλi ⟩.

With cos

( βji−βi j
2

)
> 0 (βi j , βji ∈ (−

π
2
, π

2
)) the claim follows. □

B.3 Proof of Thm. 4.2
Proof of Thm. 4.2. LetM be the triangle mesh with metric ℓ, ϕ

a basis field (Eq. (5)), and τ a given spin connection. A not neces-

sarily isometric generic map f : M → R3
then gives rise to polar

decompositions (Eq. (11)) for some λ and S = (Si )i ∈F .
Let

˜ℓ denote the metric induced by f , i.e., ˜ℓi j B |df (vi j )| = |vi j |
for ij ∈ E, which makes f isometric with respect to

˜ℓ. For the basis

field
˜ϕ choose

˜ϕi which satisfy
˜ϕi (X ) B ϕi (SiX ) for X ∈ TiM in

terms of which Eq. (11) becomes

dfi (X ) = λi ˜ϕi (X )jλi . (36)

This makes App. B.2 applicable to
˜ϕ and

˜ℓ. Furthermore, Eq. (36)

implies that λ is a unit quaternion field describing the R3
-orientation

for the
˜ℓ-isometric map f as in Lem. B.1. Following App. B.2 we

construct τ̃ as in Eq. (32) and apply Lem. B.1 to conclude that along

each triangle strip γ inM

qf (γ ) = qτ̃ (γ ) +
∑
e ∈γ
s
τ̃ ,λ
e (mod 2).

The claim now follows via Lem. B.2 and Lem. B.3. □

C LOCAL INTEGRABILITY DERIVATIONS

C.1 Integrability and Bending Angle
Here we derive Eq. (15), stating that

λj (τi jλi ) = (−1)
s
τ ,λ
i j

exp

( αi j
2
zji j

)
.

First note that i is mapped to the triangle normal by λi since ϕi j
maps the tangent space TiM to the (j, k)-plane, ni = λi iλi . This
yields

nj = λj iλj = λj (τi j iτ i j )λj = λjτi j (λiniλi )τ i jλj

= λj
(
λj (τi jλi )

)
λjniλj

(
λj (τi jλi )

)
λj .

Comparing with

nj = exp

( αi j
2

ωi (vi j )
|ωi (vi j ) |

)
ni exp

(
−
αi j
2

ωi (vi j )
|ωi (vi j ) |

)
we find

λj
(
λj (τi jλi )

)
λj = exp

(
−
αi j
2

ωi (vi j )
|ωi (vi j ) |

)
.

Subsequently using Eq. (10) and Eq. (14) the assertion, including its

sign, follows.

C.2 Local Integrability Condition
Here we derive Eq. (17) from Eq. (16) through a sequence of equiva-

lences between linear spans of vectors in H ≡ R4
. Firstly we find

Eq. (16) ⇐⇒ (τi jλi )λj ∈ Span{1, zji j}

⇐⇒ τi jλi ∈ Span{λj , zji jλj }

⇐⇒ λj − τi jλi ∈ Span{λj , zji jλj } (37)

and secondly

Eq. (16) ⇐⇒ λj ∈ Span{τi jλi , zji jτi jλi }

⇐⇒ λj − τi jλi ∈ Span{τi jλi , zji jτi jλi }. (38)

Combining these we get

Eq. (37) and Eq. (38) ⇐⇒ λj − τi jλi ∈ Span{µ ji , zji jµ ji }
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using the definition of the midframe Eq. (18). Noting that (λj −
τi jλi )⊥µ ji , Eq. (17) follows.

D IMPLEMENTATION DETAILS
In this section we give all needed implementation details to minimize

Eq. (20) by gradient descent or Newton’s method.

a

b
c

θb θc

ref. edge
@I

Given (M, ℓ) as input we first determine

all Euclidean triangle angles using the half-

angle formula

θb = 2 tan
−1

√
(ℓa+ℓb−ℓc )(ℓb+ℓc−ℓa )
(ℓc+ℓa−ℓb )(ℓa+ℓb+ℓc )

where a,b, c denote the sides of the triangle (inset). These give rise
to the usual discrete Gaussian curvatures Ωp = 2π −

∑
i ∋p θ

i
p where

θ ip denotes the angle in i ∈ F incident on p ∈ V̊ . Next we fix ϕ by

picking an arbitrary reference edge e in i and setting ϕi (e) B ℓe .
Eq. (14) gives za = 1, zb = exp

(
i(π − θc )

)
, and zc = exp

(
i(θb − π )

)
(inset) for all triangles. With these Eq. (6) yields r =

(
−
zji
zi j

)
i j ∈E̊ , and,

up to sign, τ = (τi j )i j ∈E̊ . The Tree/CoTree algorithm (App. A) is

used to choose the signs so that qτ (γp ) = 0 (figure-0) for all p ∈ V̊
and generators of the 1

st
Homology are selected to be figure-8 resp.

-0 as desired for the intended regular homotopy class (Def. 3.1). For

ij ∈ E̊ we define the orthonormal quaternions

uji,0 B 1, uji,1 B zji j, uji,2 B i, uji,3 B izji j

rendering the basis of Eq. (19) as {uji,k µ ji }k=0...3 and Eq. (20) as

Eϵ (λ) =
1

2

∑
i j ∈E̊

3∑
k=0

wi jϵk ⟨uji,k µ ji , λj − τi jλi ⟩
2. (39)

Before proceeding we first express Eq. (39) using only real vectors

resp. matrices. For a quaternion q = a1+b i+c j+dk define (q)4 and

(q)4×4 as its real column vector resp. block matrix representation

(q)4 B


a
b
c
d

 , (q)4×4 B


a −b −c −d
b a −d c
c d a −b
d −c b a

 .
For two quaternions p,q ∈ H we have (pq)4 = (p)4×4(q)4, (p)4×4 =

(p)
⊺
4×4

and ⟨p,q⟩ = (p)
⊺
4
(q)4.

To write Eq. (39) in real matrix form define the sparse matrix

D and the diagonal matrixW consisting of |E̊ | × |T | resp. |E̊ | × |E̊ |
(4 × 4) blocks with non-zero entries for each ij ∈ E̊

Di j,i B −(τi j )4×4, Di j, j B (1)4×4, and

Wi j,i j B wi j

3∑
k=0

ϵk (uji,k µ ji )4(uji,k µ ji )
⊺
4
.

Letting now λ denote the |F | × 1 column vector of R4
blocks (λi )4,

Eq. (39) becomes

Eϵ (λ) =
1

2
λ⊺ D⊺WD︸  ︷︷  ︸

CL

λ

with its gradient given by an |F | × 1 vector of R4
blocks

grad Eϵ = Lλ + g.

Here g collects the terms due to the λ-dependency of L. Explicitly,
for i ∈ F , (дi )4 depends on the triangles sharing an edge with i

(дi )4=
∑
i j ∈E̊

( ∂µ ji
∂λi

)
4×4

3∑
k=0

wi jϵk ⟨uji,k µ ji , λj − τi jλi ⟩
(
uji (λj − τi jλi )

)
4

with ( ∂µ ji
∂λi

)
4×4
=
(
(1)4×4 − (µ ji )4(µ ji )

⊺
4

) (τi j )4×4

|τi jλi+λj |

using Eq. (18).

The gradient descent method for minimizing Eϵ can now be seen

as simulating the time-dependent problem{
M ∂

∂t λ = −Lλ − g + Pλ

|(λi )4 |
2 = 1, i ∈ F

(40)

with M = diag

(
((Ai )4×4)i ∈F

)
the block diagonal mass matrix of

triangle areas Ai and P = diag

(
((pi )4×4)i ∈F

)
the block diagonal

matrix of Lagrange multipliers p : F → R enforcing the constraints

|λi | = 1. To simulate Eq. (40) we use a semi-implicit method with

projection:

Algorithm 5 Gradient descent for minimizing Eϵ

Input: Stiffness ϵ ; time step ∆t > 0; initial guess λ.
Output: Approximated minimizer for Eϵ (λ).
1: while not satisfied do
2: λ← GradientStep(λ, ∆t )
3: end while
4: function GradientStep(λ, ∆t )
5: Build g;
6: λ← λ − ∆tM−1g; ▷ Forward Euler forM Ûλ = −g.
7: Build L;
8: λ← (M + ∆tL)−1Mλ; ▷ Backward Euler forM Ûλ = −Lλ.
9: (λi )4 ←

(λi )4
|(λi )4 |

for each i ∈ F ; ▷ Constraint projection.

10: return λ
11: end function

Near a minimum, convergence can be accelerated through the use

of Newton’s method with |F | equality constraints |(λi )4 |
2 − 1 = 0

for 4|F | real variables. The Jacobian matrix for the constraints is an

|F | × |F | diagonal matrix J consisting of (1 × 4) blocks Ji,i = (λi )
⊺
4
.

Newton’s method also requires the Hessian matrix of the objective

Eϵ . We use L to approximate this Hessian matrix to arrive at the

following (quasi-)Newton’s method.

Algorithm 6 (Quasi-)Newton’s method for minimizing Eϵ

Input: Stiffness ϵ ; initial guess λ.
Output: Approximated minimizer for Eϵ (λ).
1: while not satisfied do
2: Build L, J and g;

3: ∆λ← solve

[
L J⊺

J 0

] [
∆λ
∆p

]
=

[
−Lλ − g

0

]
;

4: λ← λ + ∆λ;

5: (λi )4 ←
(λi )4
|(λi )4 |

for each i ∈ F ; ▷ Constraint projection.

6: end while

Once a minimizer has been found we need to compute vertex

positions as a final step.
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D.1 Computing Vertex Positions
For an optimal λ the local integrability condition Eq. (13) holds

approximately, unless the energy of the minimizer vanished. Using

Eq. (10) we define a discrete R3
-valued 1-form v̂ = (v̂e )e ∈E by

averaging on interior edges

v̂i j =
ℓi j
2

(
ωi (vi j ) − ωj (vji )

)
=

ℓi j
2

(
λi zi j jλi − λj zji jλj

)
, (41)

and using direct evaluation with the relevant ωi for boundary edges.

Now v̂ holds all embedded edge vectors which must be integrated

into point positions f : V → R3
. Since this is only possible for exact

v̂, we first orthogonally project v̂ onto its exact component. This

is expected to introduce only a small error on a simply connected

domain since v̂ is nearly closed. Subsequently we solve for its “scalar

potential” f . All this is accomplished by the Poisson problem

d⊺ ∗1 df = d⊺ ∗1 v̂, (42)

where v̂ resp. f are the |E | × 3 resp. |V | × 3 matrices of R3
values on

each edge resp. vertex. The |E | × |V | sparse matrix d denotes the

discrete exterior derivative on 0-forms while the sparse |E | × |E |
diagonal matrix ∗1 denotes the discrete (diagonal) Hodge star on

1-forms

de,src(e) = −1, de,dst(e) = 1, and (∗1)e,e = ŵe .

where src(e) and dst(e) are the source and destination vertices of e ,
and ŵe = w

−1

e are weights (e.g., cotan) for primal edges.

Algorithm 7 Vertex Computation

Input: λ.
Output: Surface realization f : V → R3

.

1: v̂← Eq. (41);

2: f ← solve Eq. (42).

D.2 Penalty Method for Exactness
When the domain is non-simply connected, v̂ may be far from exact

even when it is nearly closed (dv̂ ≈ 0). In that setting we include a

penalty term in the energy gradient replacing Eq. (40) by{
M ∂

∂t λ = −Lλ − g −
1

a h + Pλ

|(λi )4 |
2 = 1, i ∈ F

(43)

with the additional flow direction h designed to bring v̂ to the

subspace of exact 1-forms and a > 0 serving as penalty parameter.

To construct h we use Eq. (42) to project v̂ to its exact component

d ˜f . Unlike the isometric linear map ωi , the linear map d ˜fi is no
longer an isometry. Using the polar decomposition (Eq. (11)), let

ω∗i be the closest isometric linear map to d ˜fi which determines a

quaternionic frame λ∗i up to sign. Now choose the sign such that

⟨λ∗i , λi ⟩ > 0. Interpreting λ − λ∗ as the “projection” of v̂ − d ˜f on

the quaternionic frames, we let h = λ − λ∗ in Eq. (43). Note that

for a → 0 the iteration aside from GradientStep(λ, ∆t ) amounts

to alternating projections [Bouaziz et al. 2012]. The gradient step

however is essential since it ensures that the spin structure, with

its control over the immersion and homotopy class, enters into the

algorithm.

Algorithm 8 Gradient descent with penalty

Input: (Same as Alg. 5), a ≥ 0;

Output: Approx. minimizer λ for Eϵ yielding exact v̂ for Alg. 7.

1: while not satisfied do
2: λ← GradientStep(λ, ∆t ); ▷ Defined in Alg. 5.

3:
˜f ← VertexComputation(λ); ▷ Alg. 7.

4: ω∗ ← RotationPart(d ˜f );
5: λ∗ ←Quaternion(ω∗); ▷ Quaternion repres. of rotations.

6: λ∗ ← FixSign(λ, λ∗); ▷ Ensure (λi )
⊺
4
(λ∗i )4 > 0 i ∈ F

7: (λi )4 ← exp(− ∆t
aAi )(λi )4 +

(
1 − exp(− ∆t

aAi )
)
(λ∗i )4 i ∈ F ;

8: (λi )4 ←
(λi )4
|(λi )4 |

i ∈ F ; ▷ Constraint projection.

9: end while
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