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ISOMETRIC PIECEWISE LINEAR IMMERSIONS
OF TWO-DIMENSIONAL MANIFOLDS
WITH POLYHEDRAL METRICS INTO R3

YU. D. BURAGO AND V. A. ZALGALLER

ABSTRACT. Let M be a connected compact two-dimensional manifold (possibly with
boundary) equipped with a polyhedral metric p, i.e., a metric such that every point
has a neighborhood isometric to a neighborhood of the vertex of a cone in R® with
finite total angle around the vertex. Such a manifold has finitely many vertices
(with total angle around each vertex different from 2m) and admits a unique (up to a
homeomorphism) differential structure; this structure may be assumed to possess the
property that off the vertices the metrics is determined by smooth linear elements.

Let fo: M — R3 be a C2-smooth immersion (or embedding). If fo is short
(contracting) with respect to p, then it can be CC-approzimated by some isometric
piecewise linear immersions f;: (M, p) — R3. Moreover, if fo is an embedding, then
the f; can be chosen to be embeddings.

Thus, if such a manifold (M, p) is orientable (ot nonorientable but with nonempty
boundary), then it admits an isometric piecewise linear embedding in R3. If (M, p)
is nonorientable and closed, it admits a piecewise linear immersion into R3.

By using the same constructions it is also proved that there exists a convex poly-
hedron in R whose surface (with solid faces and fixed combinatorial scheme) admits
an isometric embedding in R3 as the boundary of another (nonconvex) polyhedron

of larger volume.

§1. MAIN RESULTS

1.1. By a two-dimensional manifold with polyhedral metric (in brief, a polyhedron) we
mean a metric space endowed with the structure of a connected compact two-dimensional
manifold (possibly with boundary) every point x of which has a neighborhood isometric
to a neighborhood of the vertex of a cone. We assume that this cone has rectifiable
directrix (which is a closed curve if = is an interior point, and a simple arc if z is a
boundary point).

The metric of a polyhedron is locally flat everywhere except for a finite collection
of points; these points are the “rue” vertices. A polyhedron with nonempty boundary
contains finitely many “true” corners of the boundary (if any). The triangulations of
polyhedrons that we consider consist of triangles isometric to straight triangles in RZ.
Such triangulations always exist; they are also called developments. All “true” vertices
and corners are necessarily among the vertices of any development (in general, the latter
vertices are more nUINErous). ‘

A polyhedron can be defined using any of its developments.
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1.2. We recall that a map f: X — Y of metric spaces is called C-short if

dy(fz, fy) < Cdx(z,y)

for all z,y € X; here dx and dy denote the distance functions. A map f is called short
(or contracting) if it is C-short for some C' < 1.

1.3. Our aim here is to prove the following discrete analog of the well-known results
of J. Nash [1] and N. Kuiper [2] on C-smooth isometric immersions; we can do this in
dimension 2.

1.4. Theorem. Every short C2-immersion fo of a polyhedron M into R? admits a
C°-approzimation by isometric piecewise linear CO-immersions. If, moreover, fo is a
CO-embedding, then the approzimating piecewise linear isometries can be chosen among
C?-embeddings.

Here the C%-smoothness of an immersion is considered with respect to the (canonical)
differential structure of the topological manifold M; this does not contradict the fact
that the metric on M may have singularities.

1.5. Example. Consider a flat torus T? (obtained by identifying the opposite sides of
a parallelogram). There is an obvious diffeomorphism fi mapping T2 onto an ordinary
rotation torus in R3. If the latter is sufficiently small, then fp is a short map. Theorem
1.4 shows that for any £ > 0, the flat torus T2 admits an isometric piecewise linear
embedding e-close to the rotation torus.

1.6. More generally, every polyhedron M admits a C?-smooth immersion into R3, and
if M is either orientable or nonorientable but with nonempty boundary, then M admits
also a C2-embedding in R3. Using a contracting homothety, we can make the immersion
(embedding) short with respect to the given polyhedral metric on M. Therefore, Theorem
1.4 implies the following statement.

1.7. Theorem. Every polyhedron M admits an isometric piecewise linear CP-immersion
into R3. If M is orientable or has a nonempty boundary, then M admits an isometric
piecewise linear CO-embedding in R®.

1.8. In [3], we proved a weaker version of Theorem 1.4 for embeddings in the case of
orientable M; namely, it was proved that an embedding Afo, and not fo itself, can be
approximated, for a sufficiently small positive A = A(M, fo). Accordingly, [3] contains
only a part of Theorem 1.7.

1.9. In passing, we fix a defect in the proof in [3]; we mean an incorrect statement in

the first paragraph of §8 of [3]. To do this we replace §4 of [3] by a more appropriate
construction.

1.10: Remark. Certainly, the requirement of C2-smoothness imposed on the short im-
11(11er51oxé ({0 can be replaced by a weaker one. For example, it suffices to require that fy
admit C%-approximation by C2-smooth (short) immersions fo; (which i i

S s ) foi (which is true, e.g., if fo

1.11. Example. Let 0 < A < 1. If @ is the surface of i
] ! ' a cube in R3, th
neighborhood of AQ contains an embedded polyhedral surface isometric to Cj e

1.12. If a'polyhedron M is the doubling (i.e., the result of identifying the boundaries
of two copies) of a convex polygon, then, obviously, M can be immersed into R3 as

zero-volume convex polyhedron. Here (and also in 1.13 and in §9) by the volu f .
polyhedron in R3 we mean the volume of the body bounded by it. On the other hI;lI?do b;
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'.I‘hec;rem 1.7, M also admits “realizations” by polyhedrons of nonzero volume embedded
in R°. In general, such polyhedrons have much more faces than a natural triangulation
of M. However, the example presented in §9 proves the following statement.

1.13. Theorem. There exists a convex polyhedron Py of nonzero volume in R3 such that
from the solid faces of P, one can construct a nonconver polyhedron Py embedded in R3
and having the same combinatorial structure as Py, but a larger volume, vol Py > vol P;.

" 1.14. Remarks. 1) Isometric piecewise linear maps of polyhedra (which, in general, are
not C%-embeddings) were also considered in [4, 5}.

2) By the classical theorem of A. D. Aleksandrov [6], every polyhedral metric of
nonnegative curvature on the sphere or on the plane can be realized by a convex surface
(the realization is not a C°-immersion only in the case of a convex dihedron-polygon).
Complete polyhedral metrics of nonpositive curvature on the plane are embeddable in
R? as saddle surfaces, see [7].

3) Also, the methods of proofs of our Theorems 1.4 and 1.13 allow us to show that
every convex polyhedron in R3 admits “linear bendings” in the sense of [8].

1.15. The layout of the paper. In §2, we describe the basic element of the construc-
tion that allows us to embed small acute triangles. In §3, we give the general outline
of the proof in the orientable case and in the more complicated nonorientable case. In
§4, we explain how to obtain a triangulation whose triangles are acute a.nd as small as
needed. We construct canonical embeddings of special kind for small nelgh}).QIIII‘OOdS of
the vertices of the polyhedron. As a preparation for 1fhis, we first vary the .1n1't1a1 r?ap
fo near the vertices. This local variation is described in §5. Yet another variation o fo

sutside some neighborhoods of the vertices makes the map very close to a conformal one;

is poi i i i leted.
see §6. At this point, the proof in the orientable case is comp o
In the nonorientable case, we first cut the polyhedron tf) make_ it orl'er}table, z:ind
immerse the resulting polyhedron (§7). Then we deform the immersion to join the edge
of the cut (§8).
Theorem 1.13 is proved in §9.

§2. THE BASIC ELEMENT OF THE CONSTRUCTION

2.1. In what follows, 4, (p = 1,2,3) are the vertices of an acute triangle T'; a, are
the corresponding vertices of another acute triangle t; B and b are the centers of the
circumscribed circles of T and ¢, and R and r are their radii; Ep and e, denote the
midpoints of the sides AxA; and axa; (here p,k, | run over all the triples of different
indices from 1 to 3). Finally, H, = BE, and h,, = be, are the distances from B and b to
the sides of T" and t.

Assume that each side of T is longer than the corresponding side of ¢,

1) AcAy > agar (k,1=1,2,3;k #1).
Since both triangles are acute, we also have
(2) ‘ R>r.
Consider a right prism in R?® with the base ¢ (see Figure 1). Above the center b we find
the point B’ such that B'a, = R. On the lateral faces of the prism we mark some points

E:;'n E;, El' s0 that axEp,a; be an equilateral broken line of length AjA; for each triple of
different indices p, k,l. Under these assumptions, the following is true.
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FIGURE 1

2.2. Lemma. If, in addition to (1), the inequalities
(3) Hy,>hy, (p=12,3)

hold, then the triangle T' can be isometrically piecewise linearly embedded in R? as a
“pleated” surface lying in the prism above t so that the boundary A A A, fits the broken
line akEI’,alE,’capEl’.

Proof. Consider the triangle part A,E,A;B of T separately. Having folded it alor}g ‘?he
line E,B, we place it into the prism in such a way that the broken line ArEpA; c01nc1.de
with axEja;. Then the segment E,B takes the position E/B" (see Figure 1). Inequality
(3) shows that the segment E,B" crosses the ray A = bB', i.e.,

(4) EB"N\#@.

Through the line axa; we draw two planes P; and P, such that they cross the segment
E;B" and the points on E,B" are ordered as follows:

E, < (E,B"NP) < (E,B"NP) < (E,B"n)\)<B".

We reflect in Py the part of the folded triangle a E,a;B" that contains B", then reflect in
P; the part of the result cut off by P,, then again reflect in Py, in P,, etc. By continuity,
the planes P; and P, can be chosen so that after an even number of reflections, B will
hit the ray A and hence exactly at the point B’. In this case, the triangle Ay A;B turns -
out to be isometrically and piecewise linearly embedded in the prism above the triangle
akalb.

Having performed this construction for each of the three parts Ay A;B (k # 1 = 1,2,3),
we obtain the required embedding of T'. It is easily seen that, under a suitable choice
of planes P and P, the images of the triangles AxA;B have no common points except
for their common sides A B. Such units will serve as the basic elements in the proofs of
Theorems 1.4 and 1.13.

2.3. If two acute triangles T".and ¢ are similar, then condition (1) alone implies (3), and
the above construction is realizable.
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Now we assume that each angle ¢ of T satisfies the inequality
(5) 0<a<go<g—a
and that, instead of (1), the following stronger condition is fulfilled:
(6) C~AkAl >ara;, C<1.

If, in addition, T' and t are sufficiently close to being similar (i.e., their sides are sufficiently

close to being proportional), then (3) is valid, and it i i
) t
R — ’ (3) nd it is possﬂﬂe to embed T above t by

2.4. The planes of the lateral faces of the prism based on t, together with the equilateral
broken lines a;, Ej,a; on these faces, can be slightly turned around the lines axa; (indepen-
dently of one another), but only as long as (4) is not violated. Under these conditions, it
remains possible to realize the above embedding of T. The maximal angle of rotation’ of
the planes admits a lower estimate in terms of the constants o and C from (5) and (6)
and the accuracy of near-similarity of T' and ¢.

2.5. In most cases, we shall construct the units described above simultaneously for a
large number of pairs of triangles (T;,t;) for which inequalities (5) and (6) are satisfied
with the same values of o and C, and the triangles of each pair are almost similar within
sufficient accuracy. '

2.6. For some other pairs (T}, t;), the value of C will be made so small that conditions
(5) and (6) alone, without any near-similarity, imply (3) and guarantee the realizability

of the construction.

§3. GENERAL OUTLINE THE PROOF

Here we outline the proof of Theorem 1.4, first for the simplest case of a closed
orientable polyhedron M (see 3.1-3.6). The case of an orientable manifold with boundary
is discussed in 3.7, and the case of a nonorientable manifold in 3.8 and 3.9.

3.1. We start with varying the original (1 — 5¢)-short map fo in small neighborhoods
of the vertices of M, so that in each neighborhood the new map has some standard
form allowing us to construct a standard embedding near the corresponding vertex. The
variation and the construction of the embedding will depend on the total angle 6 around
the vertex in question. They will be different for the cases 6.< 2m and 6 > 2m; see §5.
The map f1 obtained by variation is (1 — 2¢)-short outside of some neighborhoods of the
vertices with 6 > 2m. : »

3.2. We surround the vertices of M with small disjoint polygonal neighborhoods. The
choice of the latter depends on f1. Then we triangulate the complement of these neigh-
borhoods in M into acute triangles. There exists o > 0 such that inequality (5) is fulfilled
for all the angles ¢ of the triangles of the triangulation; see 4.6.

The triangulation will be further refined (see §4), but in all refinements inequality (5)
will be preserved for all the angles of all triangles, with the same o

3.3. After that, the map fi is varied more substantially, this time outside certain neigh-
borhoods of the vertices of M. This variation makes use of a familiar construction due to
Kuiper [2], in which a finite number of C?-smooth waves are successively superimposed
on the surface of fi. The resulting map fo remains C?-smooth and (1 — 2¢)-short and
becomes almost conformal outside of small neighborhoods of the vertices with 8 > 27.
The degree of «pear-conformality” needed for further application of the arguments from

2.3 depends only on a and C = 1—e.
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3.4. Then the triangulation chosen above is refined into sufficiently small triangles T;.
Joining the fy-images of the nodes of the refined triangulation by segments (correspond-
ing to the edges), we obtain some triangles ¢; in R3. Since the map f is almost conformal,
and the triangulation is sufficiently fine, we may assume that outside small neighborhoods
of the vertices, the t; are as close to being similar to the corresponding triangles T; as we
need. Moreover, all the dihedral angles formed by the adjacent pairs of triangles t; are
uniformly close to , provided the triangulation is fine enough. (This allows us to use
the arguments from 2.4.)

3.5. We fix one of the two sides of the polyhedral surface formed by the triangles t;
and regard the bisectors of the bihedral angles between each given t; and its adjacent
triangle as the planes of the lateral faces of a truncated pyramid (possibly degenerated
into a prism) having t; as the base and placed above that fixed side of the surface. Then
we embed each triangle T} into the corresponding pyramid by using the construction
described in §2. -

For the triangles lying in the region of “pear-conformality” of f2 the above embedding
is constructed with the help of the arguments from 2.3 and 2.4, and for those lying near
the vertices with @ < 2 the arguments from 2.6 are applicable. In the vicinity of the
vertices with @ > 2m, another construction of embedding will be used; see 5.6.

3.6. Since the surface f» is C2-smooth and compact, the embedding units (i.e., the
images of the T;) situated above close (in the structure of the surface) triangles ¢; are
disjoint if the triangulation is sufficiently fine. Thus, the entire construction yields a
piecewise linear, isometric immersion of M into R3, which is an embedding if fo is. For
more details about the way of avoiding “self-intersections” we refer the reader to §5 of
[3].

Obviously, the entire construction can be performed within any prescribed C0-neigh-
borhood of fo.

3.7. If M is an orientable polyhedron with boundary, the construction of embedding is
almost the same. The only difference is that the procedures used in the neighborhoods of
the vertices with 8 < 2m (8 > 2m) are also used at the corner points of the boundary of M
with @ < v (§ > ), where v is the angle formed by the surface fo at the corresponding
boundary point. : ,

Note that in order to prove Theorem 1.7 alone, one need not consider an orientable
polyhedron M with nonempty boundary, since it suffices to pass to the doubling of M.
Similarly, in the nonorientable case, the corner points can be removed by attaching to
the boundary a strip without corners on the exterior border.

The realizability of the plan presented in 3.1-3.7 in the case of orientable M is justified
in §4-6 below.

3.8. Now we turn to the case of a nonorientable polyhedron M, where the construction
needs to be supplemented substantially.

Every nonorientable compact 92-manifold M is homeomorphic either to the projective
plane with holes and handles, or to the Klein bottle with holes and handles. (There
may be no holes or handles.) M can be made orientable by cutting along a suitable
disorienting cycle in the former case, and along two such disjoint cycles in the latter
case. ‘

We start the construction with picking such a cut (respectively, two cuts) on M. For
definiteness, below we discuss the case of a single cut. We may assume that this cut is a
simple C?-smooth closed curve I passing through no vertices and no boundary points of

M.
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3.9. Cut along I, the polyhedron is orientable. Unlike the polyhedra with boundary, it
contains a curved boundary component £ corresponding to passing twice along T'.

Along £ we construct a triangulation of & special kind; see §7. Every refinement of it
leads to replacement of this triangulation (in a certain standard way) by the correspond-
ing broken line inscribed into £, so that actually we cut the polyhedron not along I but
along a broken line L inscribed into T'.

After that, we choose one of the two sides of the cut surface fo and, applying pro-
cedures similar to those of 3.3-3.7, construct an isometric piecewise linear immersion
(or embedding) of the polyhedron 'M cut along L. The embedding units formed by the
triangles T; located on different sides of L are placed on different sides of the surface fa.
Therefore, this embedding of the polyhedron M cut along L does not yield the required
immersion of the entire polyhedron M because of the gap along L. To get rid of that gap,
a strip of f2 adjacent to fa(L) is deformed in a special way. This allows us to “patch”

the gap; see §87, 8.

§4. THE TRIANGULATION AND ITS REFINEMENT

4.1. In§§2, 3 of (3] we proved that every polyhedron M can be split into acute triangles
with entire sides in common. :

The idea of the proof is as follows. First, the polyhedron is divided in a special way
into acute triangles, possibly adjoining one another not along entire sides. Then this
subdivision is refined, and some vertices of the refined subdivision are slightly moved
along the edges of the original one to form the required triangulation. The possibility
of finding a suitable subdivision and suitable shifts of the vertices is provided by the
well-known theorem about uniformly good approximation of a collection of real numbers
by rational ones with common (arbitrarilly large) denominator (see, €8, [9, Chapter 1,
§5]).

The construction of such an acute triangulation allows us to ensure some additional
properties. In particular, let M have a boundary, and Jet several portions of the boundary
be equilateral broken lines (each portion has its own length of segments). The method
given in [3] allows us to assume that the acute triangulation @ of M is chosen in such
a way that within each of those portions all segments are divided by @ into the same

number of equal parts.

4.2. For our purposes, before constructing the acute triangulation @, we encircle every
vertex A of M with total angle 6 < 2w by 2 small regular hexagon Q(A) composed of six
isosceles triangles with apical angle 6 /6.

4.3. The map fo is assumed to be C2?-smooth up to the boundary of the polyhedron.
Therefore, the fo-image of a neighborhood of a corner point A resembles a sector-like
portion of a C2-smooth surface, bounded by two smooth curves that form an angle
) < 2r. If A is a corner point of M with total angle 6 < ), then, as in 4.2, we draw a
polygon Q(A) composed of six isosceles triangles filling the sector of angle ¢ at A.

4.4. Before choosing the acute triangulation ®, we vary fo near the vertices B with
§ > 2m (and the corner points with 6 > )) as described below in 5.4. After the variation,
the resulting map f1 takes some circular neighborhood V (pa) of every such vertex B onto
a plane disk (or sector). Moreover, within V(ps) the map f1 is isometric on the radial
segments and is uniformly contracting on circles centered at B (so, f1 is not C-short in
this region).

We split the boundary of V(ps) in M into N > 10%9/2x equal arcs of length, say, 26.
Each arc is the base of an isosceles “triangle” in the exterior of V(ps) in M, with lateral
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FIGURE 3

sides of length 26. As a result, we obtain a “cogged” polygon Q(B) containing V(p4)
(see Figure 2).

A similar construction is performed near each corner point B with # > A. In that
case, V(p4) is a sector, Q(B) is a “cogged sector”, and N > 10%6/\.

4.5. All polygons Q(A) and Q(B) can be chosen so small that they are disjoint and none
of them contains “extraneous” vertices or boundary points.

4.6. For the polyhedron M with all the neighborhoods Q(A) and Q(B) excluded, we
construct an acute triangulation ® as outlined in 4.1.

Since the total number of triangles from & is finite, there exists @ > 0 such that
inequality (5) is satisfied for all the angles ¢ of the triangles from ® and of the triangles
constituting the polygons Q(A4).

4.7. To refine ®, we take an arbitrarily large n, split each edge into n equal segments
and, accordingly, split each triangle into n? triangles similar to it. Then the triangles of
the refined triangulation that adjoin Q(A) or Q(B) from outside split each side of Q(A)
(or Q(B)) into equal segments. Therefore, the refined triangulation can be naturally
extended to Q(A) by splitting each of the six triangle components of Q(A) into similar
triangles.

For any n, all the angles ¢ of the triangles of the refined triangulation satisfy inequality
(5), and the constant « remains unchanged.

4.8. The extension of the refinement to the cogs of the polygons Q(B) is constructed in

a somewhat different way.
Consider the cog ABC shown in Figure 3. The 51des AC and CB are segments of -
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length 26, and the “base” AB is a circle arc of length 926. Since the angle subtended by
the arc is less than 10~%, the shape of the cog ABC is close to an equilateral triangle.

Suppose that the refinement of ® splits each of the sides AC and CB intom equal seg-
ments by points Ay, ..., Am-1 and Cl,...,Cm-1; see Figure 3. We split the arc AB into
m equal arcs by points D1, ..., Dm—1 and then draw the segments DiA1, ..., Dm-14Am—1
and D,C4,...,Dm-1Cm-1. The blocks of the resulting partition are close to rhombuses.
Next, we divide each block by its diagonal (the one whose direction is close to AB) and
draw the broken line joining the points A,D,...,Dm-1,B. All the resulting triangles
form the extension of the refined triangulation.

If the triangulation is sufficiently fine, then all the angles of the above extension of
the refined triangulation satisfy (5) with the same o as before.

§5. THE FIRST VARIATION OF THE MAP
AND EMBEDDING OF NEIGHBORHOODS OF THE VERTICES

5.1. In a plane sector K(6) of angle @ we introduce polar coordinates (p,0), 0= 9,
p > 0, and, in a plane sector K (), similar coordinates (¥,7), 0 < ¥ < A, r > 0. The
map K(0) — K()) defined by

(7) | Y=7p T=0"0

is conformal for any positive a. (For A= 9 this is a conformal map of a cone with total
angle 6 onto the plane.) We call (7) the standard conformal map. \
At a point (g, p), the ratio of the linear element ds in K(X) to the linear element do

in K(0) is given by the formula

ds dr i 201
) do _dp "0 :

If 6 < )\ and p is small, then this map is short. Moreover, for any C € (0,1) there
exists po such that this map is C-short in the disk p < po-

5.2. Let A be a vertex of M with total angle 8 < 2. )

Let P be the tangent plane to our C2-smooth surface fo at the point fo(A), and let
U(p1) be a circular neighborhood of A with sufficiently small radius p1 > 0. The original
(1 — 5¢)-short map fo can be varied in U(p1) in such a way that the resulting map
remain C2-smooth, be (1 —4¢)-short, and take some circular neighborhood U(pz) (where
0 < pa < p1) of A to adisk in P centered at fo(A). Additionally, we can vary the map in
U (p2) so that it become the standard conformal map of some circular neighborhood U (p3)
of the vertex A (0 < p3 < p2) onto a plane disk, remaining C2-smooth and (1— 3¢)-short

in U(p2)-

5.3. Refining the triangulation @, we split the polygon Q(A) into small isosceles triangles
with apical angle 6/6. Inside the circular neighborhood U (p3), there is a neighborhood
U(ps), 0 < pa < p3, in which the above standard conformal map satisfies the following
two conditions. First, the vertices of the triangles T; are mapped to vertices of acute
triangles ¢; in the plane P. Second, the coefficient of contraction is so large that the
arguments from 2.6 allow us to embed every T; C U(ps) above the corresponding triangle
t; as described in Lemma 2.2. The embeddings of the triangles T; adjacent to A form a
piecewise linear isometric embedding of a certain neighborhood (in M) of A.
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5.4. A similar construction (after a due refinement of ®) yields an embedding of some
neighborhoods of the corner points A at which 6 < X. In this case, the neighborhoods
U(p;) are sectors with angle 6, and U(ps) is mapped onto a plane sector of angle A.

For a corner point with 8 = X, the map (7) reduces to a homothety of ratio a < 1-—3¢,
and the construction of the embedding is even simpler.

5.5. Let B be a vertex of M with total angle § > 2m.

As in 5.2, the map fo can be varied in a small circular neighborhood V' (p1) of B so
that the resulting map remain C%-smooth, be (1 — 4¢)-short, and take a neighborhood
V(p2) of B, 0 < p2 < p1, to a disk centered at fo(B) in the plane P tangent to the
surface fo at fo(B).

Additionally, we vary the map in V(pz) to make it satisfy the following conditions:

1) In a smaller closed circular neighborhood V(pa) centered at B, the map is isometric
on the radial segments and uniformly contracting with the coefficient 6/2m on the circles
centered at B.

2) In a certain annular neighborhood V'(ps) \ V(ps), where 0 < ps < p3 < p2, it
is the standard conformal map with the coefficient of contraction equal to /27 at the
boundary of V(ps). This can be achieved by choosing an appropriate constant @ in (7).

3) Outside V(p4) this map remains C2-smooth and (1 — 3¢)-short. (We may assume
that £ > 0 satisfies 1 — 3¢ > 2m/6.) At the boundary of V(ps) the resulting map f1 is
only C'-smooth.

5.6. Any refinement of the triangulation ® results in splitting the boundary of the cir-
cular neighborhood V(p4) into some number (say, Np,) of arcs of equal length. Let
Fy,...,Fy,, be the splitting points, and let E; denote the midpoint of the chord EFiFi.
Then the polygon V(B) = F ... Fy,, is isometrically and piecewise linearly embedded
above the plane P as a radially crimped surface shown in Figure 4.

If & is sufficiently fine, then every equilateral broken line F;E;F;,, lies in a plane
almost perpendicular to P. Therefore, it is possible (by using the arguments from 2.4)
to bring F;E;F;1 into coincidence with the side F;F;11 of an adjacent triangle T; of the
refined triangulation embedded, above P by the method of Lemma 2.2.

Neighborhoods of the corner points B with § > X are embedded in a similar way.

§6. THE SECOND VARIATION OF THE MAP

6.1. The map f; is already conformal in the neighborhoods U(ps) of the vertices A with

0 < 27 and of the corner points A with § < A\. It is also conformal in the annular

neighborhoods V' (p3) \ V(p4) of the vertices B with § > 27 and of the corner points with

?/ (> )5 Further variation of f; is performed outside of all the neighborhoods U(p3) and
p3)-
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6.2. For each vertex (or corner point), we take a C°°-smooth function ¢ : 0<p<
ps) — R such that ,

1 o if 0 < p < pa
Y(p) = { some monotone function of p if pa < p < ps,
éZPst) if p = ps,

¥ (p3) = ¥"(p3) =0

Here the values ps; and py correspond to the given vertex (or corner point), and C(p3) is
the coefficient of contraction of the metric under fi at the border of U (p3) or V(p3)- -

Let ds be the linear element of the (fat) metric of M off the vertices, and ds; the
corresponding linear element of the metric on the surface f1. We introduce a new metric
on M by the formulas

) P { P dsy in U(ps) and V(p3),
| (1 —2¢)ds outside of these neighborhoods.

Everywhere outside of the vertices and the neighborhoods V(py), this metric is con-
formally equivalent to the metric ds and is (1 — 2¢)-short with respect to ds.

6.3. Outside of U(ps) and V(p3), the map fi: M — R® is C*-smooth and short with
respect to ds*. For any A > 0, using a standard construction due to Kuiper [1], we can
vary fi outside of all U(ps) and V(ps3) in such a way that the metric ds2 induced by the
resulting C?-smooth map fo be A-close to ds*. The latter condition means that for all

directions at every point we have
|dsy —ds™| < A- ds*.

Moreover, fo is an immersion or embedding if so are fo and fi.

Outside of the regions V(ps), the map f» remains (1 — €)-short with respect to ds.

If we choose A > 0 sufficiently small, then, outside of the regions U(ps/2) and the
polygons V (B), every triangle T; of any sufficiently fine triangulation & is almost similar
(with required accuracy) to the triangle t; C R3 whose vertices are the fo-images of those
of Tz

6.4. The principal curvatures of the surface f» are uniformly bounded off U(ps) and
V(p4). Therefore, if the triangulation is sufficiently fine, then the dibedral angles formed
by the adjacent uniformly acute triangles t; are close to .

Again, if the triangulation is sufficiently fine, then the polygons V(B) can be embedded
by radially crimped surfaces as in 5.6 and Figure 4, the triangles T; lying inside U(pa)
can be embedded above t; as in 2.6, and the remaining T;, which lie outside of the
neighborhoods V(B) and U(pa/2), can be embedded above i; as in 2.5.

Since the dihedral angles formed by the pairs of adjacent triangles t; are close to m,
and the planes F;E;Fi1 (see 5.6) are almost perpendicular to the plane P, all those
embeddings can be joined together as explained in 2.4.

In addition, the fineness of a triangulation guarantees that the isometric piecewise
linear map M — R® obtained in this way remains an immersion (or embedding).

This completes the proof of Theorem 1.4 in the case where M is orientable.
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FIGURE 5 ‘

§7. THE CUT AND ITS STRIP

7.1. Let nonorientable polyhedron M be cut along a disorienting C*®-cycle T' (or two
such cycles) so that the cut manifold M be orientable. We split the cycle T into an odd
number of intervals of equal length so small that the rotation, i.e., the integral (with
respect to the length) of the absolute value of the geodesic curvature, of each interval,
be less than, say, 10710, Let § be the common length of such intervals.

Each pair of adjacent intervals is a slightly curved arc of length 26. As on bases, on
these arcs we draw triangle cogs (by turns to the right and to the left from I') with lateral
sides of length 26. The cogs are shown by hatching in Figure 5.

7.2. Then we join the apices of the adjacent cogs lying on the same side of I' by segments
shown in Figure 5 by dashed lines. The lengths of these segments slightly differ from
one another (although they all are close to 26); therefore, additionally, on each of the
segments as on a base we draw an external isosceles triangle with lateral sides of length
26. Thus, I is surrounded by a cogged strip Q(I') whose boundary is formed by segments
of length 26.

The cutset and its strip Q(T') can be chosen so that Q(I') contain no vertices or
boundary points of M and no points of the previously constructed polygons Q(A) and
Q(B).

Now we construct an acute triangulation ® for the polyhedron M excluding not only
all the Q(A) and Q(B) but also the strip (or two strips) Q(T'). Moreover, ® should split
all the boundary segments of Q(I') into one and the same number of equal parts. Let
this number be 2™(2¢ +1). At the expense of an additional refinement we may assume
that ¢ > m. ‘

7.3. The triangulation ® is extended to the strip Q(T') in such a way that each of the
above-mentioned arcs of length 26 on T be split into the odd number 3™(2g +1) of parts
of equal length.

This is done as follows. First, we extend ® to the external triangle cogs of Q(T') in the
usual way; see Figure 5. Then the upper bases of the next row of triangles (only their
apices lie on I') are split into 2™(2g + 1) segments each. To these and the remaining
triangles we extend only the splitting of each side into 2¢ +1 equal parts, and split each
triangle into (2¢ + 1)? ones. For the “triangles” with curvilinear bases on I this is done
as described in 4.8.

Now [ is surrounded by a strip of 2¢ + 1 rows of triangles (the external cogs are
excluded). In the exterior row, the exterior base of each triangle is divided into 2™ parts
by the previous extension of ®. For each of those triangles we bisect the base and trisect
each of the lateral sides, and then subdivide the triangle as in Figure 6. After that,
the splitting of the sides into 3 parts (and of each triangle into 9 parts) is extended to
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FIGURE 6

FIGURE 7

the strip up to I'. Thus, the initial splitting of the exterior bases into 2™ parts yields a
splitting of the bases of the next generation of triangles into 9m—1 parts each, and the
“next exterior row” itself becomes “three times as narrow” .

Having repeated this construction m times (i.e., through m more and more narrow
rows), we obtain the required extension of ® down to T'.

Only after this is the constant o in (5) chosen.

7.4. The triangulation ® may be further refined arbitrarily, but we agree that all refine-
ments split the sides of the triangles into an odd number of parts. '

In any triangulation so refined, T is adjoined by the “triangles” A;_1Ci—14i and
D;_1F;D; (see Figure 7) based on some curvilinear intervals on I'. We replace the cutset
I’ with the broken line A;_1D; A AiD; ... .

Each of the quadrangles A;1Ci—1AiDi—1 (and of the similar ones D;_1F;D;A;) is
close in shape to an equilateral triangle. At the expense of refining the triangulation, the
angles ZA;—1D;-1A; can be made arbitrarily close to .

7.5. If the triangulation is sufficiently fine, we can embed all its triangles T (on one
side from the cut surface f2(M)) above the corresponding triangles t; whose vertices
are the fo-images of those of T;. -The triangles @;—1C;—104, where a; = f2(4;) and
¢j = f2(Cj), make an exception, and above such a triangle we must embed the quadrangle
A;_1C;_1A;D;_1, and not the triangle A;_1Ci_14;. Since the angles ZA;_1D;_14; are
close to 7 this can be done as follows. .
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We construct a truncated pyramid based on the triangle a;_ic;_1a;. The planes of the
lateral faces of this piramid adjoining the edges a;_1c;_; and a;c;_; are the bisectors of
the dihedral angles formed by a;_1c;—16; and the adjacent triangles ;. The plane of the
face adjoining a;_1a; is parallel to the normal of the surface fo(M) at the point d;_; =
f2(D;_1). Next, on the bisector of the angle C;_; of the quadrangle A;_1C;_1A;D;_1
we mark a point D so that the segments DA;_; and DA, be still inside the quadrangle,
but the angle ZA;_1DA; be very close to «; see Figure 8.

Then we single out the quadrangle A;_1DA;D; ,, fold it along D;_; D, and embed it
into the pyramid in such a way that the points A;_; and A; coincide with a;—1 and a;,
the broken line A;_1D;_1A; lie in the lateral face, and the point D be inside the pyramid.
The remaining part A;_1C;_1A;D, having already exactly equal sides A;_ 1D = DA,,
can be embedded with the help of the construction described in §2.

The neighborhoods of the vertices and the corner points of M are embedded as in §5.

As a result, the polyhedron M cut along the broken line L = A;_1D; 1A;D;... is
immersed (or embedded) into R®, but the two sides of the broken line a;—1d;—1a:d; ...
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do not fit togeth
er. The « »
€ “gates” a;—1D;_1a;, di—1A4;d;,. .. shown in Figure 9 are almost

orthogonal to the surface f.
_ . 2(M) but go in opposite directi i i
immonsion of the M out syt keepspi[t) cu‘f irections relative to it. So, the above

§8. JOINING THE CUTSET

8.1. Let ¢t and T denote th,
The function (t) = & is ecirc—lengtﬁl Pal‘ameFe'rS onT' C M and on f»(T), respectively.
(L - &)-short, L -smooth and positive. Moreover, ¢ < 1 — ¢, because f2 is
With every point f,(I'(t)) we associ
sociate the plane P(t) that i
surface fo at that point and is tangent to fo(T'). () that contalns themormel of the
?f,.under a refinement of the triangulation, each segment A4;_1A; of I' of length 26 is
spht 1¥1t0 N parts, then for N large every triangle A = a;—1D;_1a; lies in a plane whose
dlrectl‘on is close to that of P(t), where t is the value of parameter corresponding to D;_1
(see Figure 8). The shape of A is close to that of the isosceles triangle A’ = a_y Dj_,a;

with sides

‘ 6 26
ai_lD‘_l = aIiDg-l =N’ a;—la",i = N“P(t)-

The altitude h of A’ drawn from Dj_; is of length

h=y1- wm%.

Therefore, as the triangulation grows finer, the direction of each segment D;_1d;—1 in
Figure 8 approaches the normal to the surface f2 at di—1, and the length of each segment

becomes close to /1 — ¢? G2

8.2. The cut surface f, contains the twice-passed cycle f2 (") as a boundary component.
Any refinment of our triangulation gives us a polyhedral surface inscribed into the cut
surface fo and bounded by the broken linel =...Q2;-1GiGi+1 -+ d;_1didiv1.... On this
orientable polyhedral surface, the broken line [ is adjoined (from one side only) by a strip
composed of many rows of almost equilateral triangles t;, which are the images of the
triangles lying in the strip Q(I) cut along the broken line L = ... Ai—1Di1AiDi....
We shall vary f; in a C?-smooth way within the strip Q(T') cut along I'. The regions
of the surface f» located on two different sides of fo(I") are varied independently and
lose their fitting together at f2(T). In the process, the polyhedral surface composed of
the triangles t;, also undergoes deformation. Such a variation is said to be admissible if
above all the triangles ¢; it remains possible to construct coordinated embeddings of the
corresponding triangles T; (and the quadrangles of the form A;—1Ci_14iDi-1)-

8.3. If the triangulation is sufficiently fine, then there exists an admissible variation that

“shifts each boundary point f2 (I'(t)) by a distance of 14/1— ©2(t) % along the normal at
f2(I'(t)), in the direction ‘opposite to the side of the cut surface where the triangles Tj
are constructed (on the given side of f2(I)). :

After such a variation, the pair of points d;_1 and d; becomes close to the pair D;-1,
D; (see Figure 8). :

If the triangulation is sufficiently fine, then it is possible to bring each d; into coinci-
dence with the corresponding point D; by an additional admissible variation.

After that, using the remaining flexibility of the embeddindgs of D;_1F;D;A; (see
2.4) we can slightly turn each of the triangles d;_1A;d;, making the entire contour
T Di_1aiD7;(1i+1Di+1 ... coincide with ... di_1Aid; Aiadigr - -

This completes the proof of Theorem 1.4 in the case where M is nonorientable.
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9.2. Inthe above example, it is still possible to embed the triangles T; above the triangles
t; provided the shape of T} is slightly varied. Therefore, by shifting a little the nodes of
the triangulation of Q, we can change Q into a new, “almost plane” convex polyhedron
Q: of very small volume such that all (slightly deformed) triangles T; are the true faces
of ;. It remains possible to increase the volume of ¢y under another (nonconvex)
isometric embedding of it in R3.

9.3. The embedding of a single face T of @, into a pyramid based on t; by the method
of §2 involves three steps. First, the triangle T; = ABC is divided into the isosceles
triangles OAB, OBC, and OCA, where O is the center of the circumscribed circle.
Second, each of the triangles is divided into a series of thin triangles; see the triangles
AFiFi.{.l = BFiFi_{_l in Figure 10.

After that, the construction described in §2 is realized by folding along the segments
OF17 AFM EEH—I, FzBa FZmF'

We can replace the polyhedron @, with another convex polyhedron Q; obtained from
Q: by raising the center O of each face T; = ABC a little above the plane of Tj. The
faces of Q4 are isosceles triangles close to OAB, OBC and OCA.

Finally, for every face OAB of Qs it is possible to choose the points F1,.. ., Fan and
to raise the points F' and F; a little above the plane OAB so that, first, the triangles
AOF,, BOF,, AF;F;.,, BF;F;11, AR F, BF, F (see Figure 10) be true faces of the
convex hull Q3 of the vertices of Q2 and all the raised points F and F; from all the faces
of Q,, and second, precisely these triangles realize the embeddings of §2.

The example presented by the polyhedron Q3 proves Theorem 1.13. .
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