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Abstract. In this article, we examine the wavelet modified (or stabilized) hierarchical basis
(WHB) methods of Vassilevski and Wang, and extend their original quasiuniformity-based framework
and results to several types of local 2D and 3D red-green and red refinement procedures. The
concept of a stable Riesz basis plays a critical role in the original work on WHB, and in the design
of efficient multilevel preconditioners in general. We carefully examine the impact of local adaptive
mesh refinement on Riesz bases and matrix conditioning. In the analysis of WHB methods, a critical
first step is to establish that the BPX preconditioner is optimal for the refinement procedures under
consideration, and to develop a number of supporting results for the BPX preconditioner. Therefore,
the first article in this series was devoted to extending the results of Dahmen and Kunoth on the
optimality of BPX for a certain type of 2D local refinement to additional types of 2D and 3D
local refinement procedures. These results from the first article, together with the local refinement
extension of the WHB analysis framework presented here, allow us to establish optimality of WHB
preconditioner on several types of locally refined meshes in both 2D and 3D. More precisely: with
PDE coefficients in C1, we establish optimality for the multiplicative WHB method on locally refined
meshes in both 2D and 3D. Without such smoothness assumptions, we show that the early suboptimal
results can also be extended to locally refined meshes. With the minimal smoothness assumption
that PDE coefficients are in L∞, we establish optimality for additive WHB on the same classes of
locally refined meshes in both 2D and 3D. An interesting implication of the optimality of WHB
preconditioner is the a priori H1-stability of the L2-projection. The existing a posteriori approaches
in the literature dictate a reconstruction of the mesh if such conditions cannot be satisfied. The proof
techniques employed throughout the paper allow extension of the optimality results, the H1-stability
of L2-projection results, and the various supporting results to arbitrary spatial dimension d ≥ 1.
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1. Introduction. In this article, we analyze the impact of local adaptive mesh
refinement on the stability of multilevel finite element spaces and on the optimality
(linear space and time complexity) of multilevel preconditioners. Adaptive refine-
ment techniques have become a crucial tool for many applications, and access to
optimal or near-optimal multilevel preconditioners for locally refined mesh situations
is of primary concern to computational scientists. The preconditioners which can
be expected to have somewhat favorable space and time complexity in such local
refinement scenarios are the hierarchical basis (HB) method, the Bramble-Pasciak-
Xu (BPX) preconditioner, and the wavelet modified (or stabilized) hierarchical basis
(WHB) method. While there are optimality results for both the BPX and WHB pre-
conditioners in the literature, these are primarily for quasiuniform meshes and/or two
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space dimensions (with some exceptions noted below). In particular, there are few
hard results in the literature on the optimality of these methods for various realistic
local mesh refinement hierarchies, especially in three space dimensions. We assemble
a number of such results in this article, which is the second in a series of three ar-
ticles [2, 3] on local refinement and multilevel preconditioners (the material forming
this trilogy is based on the first author’s Ph.D. dissertation [1]). This second article
focuses on the WHB methods; the first article [3] developed some results for the BPX
preconditioner.

The problem class we focus on here is linear second order partial differential
equations (PDE) of the form:

−∇ · (p ∇u) + q u = f, u ∈ H1
0 (Ω).(1.1)

Here, f ∈ L2(Ω), p, q ∈ L∞(Ω), p : Ω → L(Rd,Rd), q : Ω → R, where p is a
symmetric positive definite matrix function, and where q is a nonnegative function.
Let T0 be a shape regular and quasiuniform initial partition of Ω into a finite number
of d simplices, and generate T1, T2, . . . by refining the initial partition using either red-
green or red local refinement strategies in d = 2 or d = 3 spatial dimensions. Denote as
Sj the simplicial linear C0 finite element space corresponding to Tj equipped with zero
boundary values. The set of nodal basis functions for Sj is denoted by Φ(j) = {φ(j)

i }
Nj
i=1

where Nj = dim Sj is equal to the number of interior nodes in Tj . Successively refined
finite element spaces will form the following nested sequence:

S0 ⊂ S1 ⊂ . . . ⊂ Sj ⊂ . . . ⊂ H1
0 (Ω).(1.2)

Although the mesh is nonconforming in the case of red refinement, Sj is used within
the framework of conforming finite element methods for discretizing (1.1).

Let the bilinear form and the functional associated with the weak formulation
of (1.1) be denoted as

a(u, v) =
∫

Ω

p ∇u · ∇v + q u v dx, b(v) =
∫

Ω

f v dx, u, v ∈ H1
0 (Ω).

We consider primarily the following Galerkin formulation: Find u ∈ Sj , such that

a(u, v) = b(v), ∀v ∈ Sj .(1.3)

The finite element approximation in Sj has the form u(j) =
∑Nj
i=1 uiφ

(j)
i , where u =

(u1, . . . , uNj )
T denotes the coefficients of u(j) with respect to Φ(j). The resulting

discretization operator A(j) = {a(φ(j)
k , φ

(j)
l )}Njk,l=1 determines the interaction of basis

functions with respect to a(·, ·) and must be inverted numerically to determine the
coefficients u from the linear system:

A(j)u = F (j),(1.4)

where F (j) = {b(φ(j)
l )}Njl=1. Our task is to solve (1.4) with optimal (linear) complexity

in both storage and computation, where the finite element spaces Sj are built on
locally refined meshes. The condition number κΦ(j)(A(j)) of A(j) with respect to the
chosen basis Φ(j) provides an upper bound on the number of iterations required by
conjugate gradient-type methods to produce an approximate solution (satisfying a
given fixed tolerance) to a linear system involving A(j). Therefore, it is desirable to
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have an analysis framework for bounding the condition number produced by a given
basis, with the goal of finding bases which produce uniformly bounded condition
numbers (or at least condition numbers with slow growth).

HB methods are particularly attractive in the local refinement setting because
(by construction) each iteration has linear (optimal) computational and storage com-
plexity. Unfortunately, the resulting preconditioner is not optimal due to condition
number growth: in two dimensions the growth is slow, and the method is quite effec-
tive (nearly optimal), but in three dimensions the condition number grows much more
rapidly with the number of unknowns. To address this instability, one can employ
L2-orthonormal wavelets in place of the hierarchical basis; such wavelets form a stable
Riesz bases in H1, thereby giving rise to an optimal preconditioner [13]. However, the
complicated nature of traditional wavelet bases, in particular the non-local support
of the basis functions and problematic treatment of boundary conditions, severely
limits computational feasibility. WHB methods have been developed [23, 24] as an
alternative, and they can be interpreted as a wavelet modification (or stabilization)
of the hierarchical basis. These methods have been shown to optimally stabilize the
condition number of the systems arising from hierarchical basis methods on quasiu-
niform meshes in both two and three space dimensions, and retain a comparable cost
per iteration.

The framework developed in [23, 24] for the analysis of stabilizations of the hi-
erarchical basis on quasiuniform meshes relies on establishing an optimal BPX pre-
conditioner. In this article, we adopt the modern framework which exploits estimates
related to depth of the hierarchy rather than the element size (i.e. 2−j versus h).
This framework enables the extension to local refinement setting. To use the ex-
tended framework, one again begins by establishing optimality of the BPX precon-
ditioner, but now for the particular local refinement procedures of interest. One can
find two such general optimality results for the BPX preconditioner on locally refined
meshes in the literature. These are due to Dahmen and Kunoth [11] and Bornemann
and Yserentant [7], both of which consider only the two-dimensional case. A third
distinct set of results for the BPX preconditioner can be found in the companion ar-
ticle [3], which gives a comprehensive survey of the existing results, and also extends
several of the existing BPX results to the three-dimensional local refinement setting.
We use the approximation theory framework and optimal BPX results from [3] in
this article to establish optimality results for WHB methods on locally refined meshes
produced using two- and three-dimensional red-green and red refinement procedures.
These local refinement procedures are fairly standard and can be easily implemented.

Outline of the paper. In §2, we review the relationship between condition num-
bers of matrices and stable Riesz bases. In §3, we outline a theoretical framework for
constructing optimal multilevel preconditioners through decompositions of finite ele-
ment spaces, giving necessary conditions on the decomposition operators for optimal-
ity. In §4, condition number bounds for the HB and WHB preconditioners are given
by establishing explicit Riesz basis stability bounds, and we show that H1-stability
of the slice operators πj is a necessary condition for obtaining a H1-stable Riesz basis
(or equivalently, an optimal preconditioner). In §5, we briefly describe implementable
versions of red-green and red local refinement of two- and three-dimensional sim-
plex meshes, and list a number of critical geometrical results for the resulting refined
meshes that were established in [3]. In §6, we set up the main theoretical results in
the paper, state the fundamental assumption for establishing basis stability and WHB
preconditioner optimality, and establish the main results, namely the optimality of
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the WHB preconditioner in the 2D and 3D local refinement settings described in §5.
The results in §6 rest completely on the BPX results from the companion article [3]
and on Bernstein estimates, the latter of which rest on the geometrical results estab-
lished in §5. In §7.1 the additive WHB method is analyzed, where optimal spectral
equivalence is established for general PDE coefficients p ∈ L∞(Ω) for all the five local
refinement procedures: 3D/2D red-green, 3D/2D red, and 2D red as in [7]. In §7.2,
the multiplicative WHB method is considered, and optimality is shown for smooth
PDE coefficients p ∈ C1(Ω) for the 3D/2D red refinements in [3] and in [7]. A compar-
ison of the two-dimensional red refinement procedures is given in §8. The theoretical
obstacle for optimal multiplicative methods is the strengthened Cauchy-Schwarz in-
equality. However, in the absence of the strengthened Cauchy-Schwarz inequality or
p ∈ C1(Ω), we are able to show a nearly optimal spectral equivalence result by using
the H1-stability of Wj established in §4. Table 1.1 encapsulates the optimality re-
sults we establish in this article. A collection of experiments with the methods under
consideration is presented in [2].

Table 1.1

Collection of optimality results proved in this article for the wavelet modified hierarchical basis
methods. r, r-g, and opt. stand for red, red-green, and optimal respectively.

coeff. method 3D r 2D r 2D r in [7] 3D r-g 2D r-g
p ∈ C1 additive opt. opt. opt. opt. opt.

multiplicative opt. opt. opt. subopt. subopt.
p ∈ L∞ additive opt. opt. open subopt. subopt.

multiplicative subopt. subopt. open subopt. subopt.

Finally, as optimality of the WHB preconditioner implies H1-stability of the Wj

operator restricted to finite element spaces under the same class of local refinement al-
gorithms, likewise a surprising implication of the optimality of the BPX preconditioner
is H1-stability of L2-projection. This question has been actively studied in the finite
element community due to its relationship to multilevel preconditioning. The existing
theoretical results, mainly due to Carstensen [10] and Bramble-Pasciak-Steinbach [8]
involve a posteriori verification of somewhat complicated mesh conditions after refine-
ment has taken place. If such mesh conditions are not satisfied, one has to redefine
the mesh. However, the stability result we obtained in §4.1 appears to be the first a
priori H1-stability result for L2-projection on the finite element spaces produced.

2. Condition numbers and Riesz Bases. Let H be a separable Hilbert space
with a nested sequence of finite dimensional subspaces,

H0 ⊂ H1 ⊂ . . . ⊂ Hj ⊂ . . . ⊂ H,

where dim(Hj) = Nj . Consider a bounded bilinear form a(·, ·) defined on H × H
satisfying the inf-sup condition. Let u ∈ Hj and let Φ(j) = {φi}

Nj
i=1 be a basis for

Hj such that u =
∑Nj
i=1 uiφi, where u = (u1, . . . , uNj )

T denotes the coordinates of u
with respect to Φ(j). Let A(j) = {a(φk, φl)}

Nj
k,l=1 denote the discretization operator

with respect to Φ(j). As remarked earlier, we are generally interested in the condition
number of A(j) for different choices of bases, such as hierarchical-type bases.

A basis-dependent inner-product in the coefficient space will be used for the cal-
culation of κΦ(j)(A(j)), 〈u, v〉Φ(j) =

∑Nj
i=1 uivi, and the norm induced by 〈·, ·〉Φ(j) will
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be denoted as ‖u‖2
Φ(j) =

∑Nj
i=1 u

2
i . Note that κΦ(j)(A(j)) becomes uniformly bounded

if Φ(j) chosen to be an orthonormal basis with respect to the inner-product (·, ·)H of
H. However, it is not practical to assume the existence of an orthonormal basis which
is also computationally feasible. In a separable Hilbert space H, the next best thing
to an orthonormal basis, in this sense, is an H-stable Riesz basis.

Definition 2.1. Let Φ = {φi}∞i=1 be a basis for H, and u =
∑∞
i=1 ciφi. If there

exist two absolute constants σ1 and σ2 such that

σ1‖u‖2H ≤
∞∑
i=1

c2i ≤ σ2‖u‖2H , ∀u ∈ H,(2.1)

then Φ is called an H-stable Riesz basis.
The condition (2.1) for finite dimensional Hj can be written as

σ
(j)
1 ≤

‖u‖2
Φ(j)

‖u‖2Hj
≤ σ(j)

2 , ∀u ∈ Hj .(2.2)

The primary task becomes gaining some control over the ratio σ(j)
2 /σ

(j)
1 .

Definition 2.2. The family
{

Φ(j) ≡ {φi}
Nj
i=1

}
is a uniformly Hj-stable family

of Riesz bases if there exists c independent of j such that: σ
(j)
2 /σ

(j)
1 ≤ c, j →∞.

The case of primary interest is when Hj = Sj . The discussion above results in
the following theorem.

Theorem 2.3. Let Φ(j) be a basis of Sj satisfying (2.2). Then with c depending
on the norm of the bilinear form and the stability constant from the inf-sup condition;

κΦ(j)(A(j)) ≤ c σ(j)
2 /σ

(j)
1 .

Note that σ(j)
2 /σ

(j)
1 is basis-dependent and our motivation is to find H1-stable Riesz

bases so that the condition number is uniformly bounded.

3. Multilevel preconditioning framework and the WHB preconditioner.
The primary goal of this work is to describe an approximation theory framework for
constructing and analyzing multilevel preconditioners, and then to use the framework
to show that the wavelet modified hierarchical basis (WHB) preconditioner is optimal
for several practical local refinement algorithms. Multilevel preconditioning exploits
the underlying multilevel hierarchical structure. Let N f

j denote the newly introduced
(fine) nodes in a locally refined mesh, then the following decomposition at level j is
naturally introduced:

Nj = Nj−1 ∪N f
j .(3.1)

The key point is to reflect the hierarchical ordering of nodes (3.1) in the corresponding
nodal basis functions, thereby reaching a hierarchical splitting:

Sj = Sj−1 ⊕ Sfj ,(3.2)

where Sfj is called a slice space (superscript f stands for fine and later c will stand for
coarse). The two-level decomposition is central to HB methods [5]. In this process
the slice space Sfj is selected as a hierarchical complement of Sj−1 in Sj . Namely

Sfj = (πj − πj−1)Sj ,(3.3)
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where πj : L2 → Sj is a linear operator with the following three properties:

πj |Sj = I,(3.4)
πjπk = πmin{j,k},(3.5)

‖(πj − πj−1)u(j)‖L2 ' ‖u(j)‖L2 , u(j) ∈ (Ij − Ij−1)Sj ,(3.6)

where Ij : L2(Ω) → Sj denotes the finite element interpolation operator. Applying
the two-level decomposition (3.2) may not give a stable splitting of Sj . This means
that A(j−1) may not be well-conditioned. This difficulty can be overcome by repeating
the above procedure so that SJ can be represented completely by slice spaces:

S = SJ = S0 ⊕ Sf1 ⊕ . . .⊕ S
f
J .(3.7)

Such a splitting will turn out not only to be stable, but as a consequence it will
also have the advantage of producing well-conditioned fine-fine interaction operators
A

(j)
22 as will be explained in §9.1. In light of (3.7), multilevel preconditioning can be

interpreted as a stable splitting of u ∈ SJ ,

u =
J∑
j=0

(πj − πj−1)u.(3.8)

The splitting (3.8) will then define a preconditioner B(J) with π−1 = 0:

(B(J)u, v) ≡
J∑
j=0

22j((πj − πj−1)u, (πj − πj−1)v), u, v ∈ SJ .(3.9)

Let us assume that the inversion of B(J) is computationally feasible. If the following
spectral equivalence can be established:

λB(J)(B(J)u, u) ≤ (A(J)u, u) ≤ ΛB(J)(B(J)u, u),(3.10)

then the efficiency of the preconditioner will be determined by the ratio
Λ
B(J)

λ
B(J)

, since

κ(B(J)−1
A(J)) ≤ Λ

B(J)

λ
B(J)

. The preconditioner B(J) in (3.9) induces the so-called pre-
conditioner norm as given below:

‖u‖2B(J) ≡ (B(J)u, u) =
J∑
j=0

22j‖(πj − πj−1)u‖2L2
.(3.11)

Here, we should clarify that by stable splitting, we mean that the corresponding
preconditioner will have favorable λB(J) and ΛB(J) , and in the best case, optimal
bounds [18, 19].

Let Qj : L2(Ω)→ Sj denote the L2-projection. We are going to apply this frame-
work to different examples by selecting πj equal to Ij and Qj , which will give rise to
HB and BPX preconditioners, respectively. In local refinement, HB methods enjoy an
optimal complexity of O(Nj−Nj−1) per iteration per level (resulting in O(NJ) overall
complexity per iteration) by only using degrees of freedom (DOF) corresponding to
Sfj by the virtue of (3.3). However, HB methods suffer from suboptimal iteration
counts or equivalently suboptimal condition number. On the other hand, the BPX
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preconditioner enjoys an optimal condition number in the case of uniform refinement
in 2D and 3D. In the companion article [3], we also showed that the optimal condi-
tion number extends to 2D/3D red-green and red refinement procedures. The BPX
decomposition Sj = Sj−1 ⊕ (Qj −Qj−1)Sj gives rise to basis functions which are not
locally supported, but they decay rapidly outside a local support region. This allows
for locally supported approximations, and in addition the WHB methods [23, 24, 25]
can be viewed as an approximation of the wavelet basis stemming from the BPX de-
composition [13]. A similar wavelet-like multilevel decomposition approach was taken
in [22], where the orthogonal decomposition is formed by a discrete L2-equivalent
inner product. This approach utilizes the same BPX two-level decomposition [21, 22].

The WHB preconditioner introduced in [23, 24] is, in some sense, the best of
both worlds. While the condition number of the HB preconditioner is stabilized by
inserting Qj in the definition of πj , somehow employing the operators Ij − Ij−1 at
the same time guarantees optimal computational and storage cost per iteration. The
operators which will be seen to meet both goals at the same time are:

Wk =
J−1∏
j=k

Ij +Qaj (Ij+1 − Ij),(3.12)

with WJ = I. The exact L2-projection Qj is replaced by a computationally feasible
approximation Qaj : L2 → Sj . To control the approximation quality of Qaj , a small
fixed tolerance γ is introduced:

‖(Qaj −Qj)u‖L2 ≤ γ‖Qju‖L2 , ∀u ∈ L2(Ω).(3.13)

In the limiting case γ = 0, Wk reduces to the exact L2-projection on SJ by (3.4):

Wk = Qk Ik+1Qk+1 . . . IJ−1QJ−1 IJ = QkQk+1 . . . QJ−1 = Qk.

The properties (3.4), (3.5), and (3.6) can be verified for Wk as follows:
• Property (3.4): Let u(k) ∈ Sk. Since (Ij+1 − Ij)u(k) = 0 and Iju

(k) = u(k) for
k ≤ j, then [Ij +Qaj (Ij+1 − Ij)](u(k)) = u(k), verifying (3.4) for Wk. It also implies

W 2
k = Wk.(3.14)

• Property (3.5): Let k ≤ l, then by (3.14)

WkWl = [(Ik +Qak(Ik+1 − Ik)) . . . (Il−1 +Qal−1(Il − Il−1)) Wl]Wl = Wk.(3.15)

Since Wku ∈ Sk and Sk ⊂ Sl, then by (3.4) we have

Wl(Wku) = Wku.(3.16)

Finally, (3.5) then follows from (3.15) and (3.16).
• Property (3.6): This is an implication of Lemma 9.1.
The optimality of the WHB preconditioner in the locally refined cases is the main

result of this paper (see Theorem 6.2). In particular, we establish the following norm
equivalence:

‖u‖2WHB ≡
J∑
j=0

22j‖(Wj −Wj−1)u‖2L2
' ‖u‖2H1 ,
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where Wj is as in (3.12), and where the underlying finite element spaces are built on
fairly standard types of locally refined meshes. For an overview, we list the corre-
sponding slice spaces for the preconditioners of interest:

HB: Sfj = (Ij − Ij−1)Sj ,
BPX: Sfj = (Qj −Qj−1)Sj ,
WHB: Sfj = (Wj −Wj−1)Sj = (I −Qaj−1)(Ij − Ij−1)Sj .

4. H1-stable Riesz bases and the WHB preconditioner. As the multilevel
decomposition (3.7) suggests, one can view SJ as a span of multilevel hierarchical
basis (MHB) functions. The MHB can be any computationally feasible basis and it is
the nodal basis φ(j)

i in our context. Modification to the nodal basis can be made by
any linear operator πj satisfying the properties (3.4), (3.5), and (3.6), in particular
by the WHB operator Wj given in (3.12).

Definition 4.1. Let {φ(j)
i }

Nj
i=1 be the hierarchical basis for Sj, j = 0, . . . , J .

Then the wavelet modified multilevel hierarchical basis (WMHB) for Sj is defined as
follows:

Φ(J) =
J⋃
j=0

{
(Wj −Wj−1)φ(j)

i

}Nj
i=Nj−1+1

.(4.1)

It can be shown (see Lemma 3.1 in [23]) that the WMHB (4.1) forms a basis for SJ .
With this fact at our disposal, let u be represented with respect to the WMHB:

u =
J∑
j=0

Nj∑
i=Nj−1+1

ci(Wj −Wj−1)φ(j)
i .(4.2)

Property (3.5) leads to:

Wku =
k∑
j=0

Nj∑
i=Nj−1+1

ci(Wj −Wj−1)φ(j)
i .(4.3)

In order to establish Riesz stability, we will need a scaled version of the WMHB
in (4.1) given as below:

Φ̄(J) =
J⋃
j=0

{
2j/2(d−2)(Wj −Wj−1)φ̄(j)

i

}Nj
i=Nj−1+1

,(4.4)

where u =
∑J
j=0

∑Nj
i=Nj−1+1 c̄iφ̄

(j)
i =

∑J
j=0

∑Nj
i=Nj−1+1 ciφ

(j)
i and the following coef-

ficient relationship holds:

c̄i = 2j/2(2−d)ci, i = Nj−1 + 1, . . . , Nj , j = 0, . . . , J.(4.5)

The preconditioner norm ‖ · ‖B(J) in (3.11) will then be equivalent to the coefficient
norm ‖ · ‖Φ̄(J) . This norm equivalence can be expressed succinctly as follows:

Lemma 4.2. Let u =
∑J
j=0

∑Nj
i=Nj−1+1 c̄i 2j/2(d−2)(πj − πj−1)φ̄(j)

i and let πj
satisfy the properties (3.4), (3.5), and (3.6). Then

‖u‖2B(J) ≡
J∑
j=0

22j‖(πj − πj−1)u‖2L2
'

NJ∑
i=1

c̄2i ≡ ‖u‖2Φ̄(J) .(4.6)
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Proof. Using (4.3) and linearity of πj respectively:

(πj − πj−1)u =
Nj∑

i=Nj−1+1

ci(πj − πj−1)φ(j)
i = (πj − πj−1)

Nj∑
i=Nj−1+1

ciφ
(j)
i .

Note that
∑Nj
i=Nj−1+1 ciφ

(j)
i ∈ (Ij − Ij−1)Sj . Then by property (3.6)

‖(πj − πj−1)u‖2L2
' ‖

Nj∑
i=Nj−1+1

ciφ
(j)
i ‖

2
L2
.

The mass matrix is equivalent to its diagonal due to shape regularity and compact
support of basis functions. Moreover for i = Nj−1 +1, . . . , Nj , j = 0, . . . , J , the local
refinements under consideration promise a quasiuniform support of φ(j)

i (see (5.4)),
hence ‖φ(j)

i ‖2L2
' 2−jd. Putting these facts together, one gets:

‖
Nj∑

i=Nj−1+1

ciφ
(j)
i ‖

2
L2
'

Nj∑
i=Nj−1+1

c2i ‖φ
(j)
i ‖

2
L2
'

Nj∑
i=Nj−1+1

c2i 2−jd.

Eventually by (4.5),

J∑
j=0

22j‖(πj − πj−1)u‖2L2
'

J∑
j=0

2j(2−d)

Nj∑
i=Nj−1+1

c2i =
NJ∑
i=1

c̄2i .

There are two important connections here to H1-stable Riesz bases. First, the
equivalence (4.6) implies that constructing an optimal preconditioner is equivalent to
forming an H1-stable Riesz basis Φ̄(J). The involvement of πj in both the splitting
(3.8) and in the WMHB representation in (4.2) makes it the most crucial element in
the stabilization. We then come to the central question: Which choice of πj can make
MHB an H1-stable Riesz basis? The second connection to H1-stable Riesz bases is
the following theorem, which sets a guideline for picking πj . It shows that H1-stability
of the πj is actually a necessary condition for obtaining an optimal preconditioner.

Theorem 4.3. If πj : L2 → Sj , j = 0, . . . , J give rise to an optimal precondi-
tioner (or equivalently, if Φ̄(J) is an H1-stable Riesz basis for SJ), then for all u ∈ SJ
there exists an absolute constant c such that

‖πju‖H1 ≤ c ‖u‖H1 , ∀j ≤ J.

Proof. See Theorem 4 in [24].
The finite element interpolation operator Ij is not bounded in the H1-norm, and

the following explicit tight bounds are well-known [4, 6, 17, 28]:

‖Iju‖H1 ≤ c
{

(J − j + 1)1/2, d = 2
2(J−j)/2, d = 3

}
‖u‖H1 .

In the light of Theorem 4.3, the basis in the HB method [6, 27] cannot form an
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Fig. 4.1. Left: Hierarchical basis function without modification. Wavelet modified hierarchical
basis functions. Middle: One iteration of symmetric Gauss-Seidel approximation. Right: One
iteration of Jacobi approximation.

Fig. 4.2. Lower view of middle and left basis functions in Figure 4.1.

H1-stable Riesz basis. For the performance analysis of the HB preconditioner, we
choose the suitably scaled MHB as in (4.4) and (4.5). Then, by Lemma 4.2,

‖u‖2HB ≡
J∑
j=0

22j‖(Ij − Ij−1)u‖2L2
'

NJ∑
j=1

c̄2i ≡ ‖u‖2Φ̄(J) .

The suboptimal bounds for Ij manifest themselves as in the following widely known
result [16, 18] about HB.

c1

{
J−2, d = 2
2−J , d = 3

}
‖u‖2HB ≤ ‖u‖2H1 ≤ c2‖u‖2HB.

Therefore, the HB preconditioner is not optimal, and its performance severely deteri-
orates in dimension d = 3. Furthermore, Theorem 2.3 implies that the discretization
operator Ā(J) = {a(φ̄(J)

k , φ̄
(J)
l )}NJk,l=1 with respect to the scaled HB cannot be well-

conditioned with the following tight bounds:

κΦ̄(J)(Ā(J)) ≤ c
{
J2, d = 2
2J , d = 3

}
.

On the other hand, Theorem 6.2 indicates that the WMHB in (4.1) forms an
H1-stable Riesz basis (see Corollary 6.3). Hence, by Theorem 2.3, the discretization
operator relative to the scaled WMHB in (4.4) is well-conditioned: κΦ̄(J)(Ā(J)) ≤ c.
Riesz stability is attained through wavelet modifications. In particular, the modi-
fication is made by subtracting from each HB function φ

(j)
i ∈ Sfj its approximate

L2-projection Qaj−1φ
(j)
i onto the coarse level j − 1. Such modifications are depicted

in Figures 4.1 and 4.2. Note that modification with symmetric Gauss Seidel approxi-
mation gives rise to basis functions with larger supports than the ones modified with
Jacobi approximation.
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4.1. H1-stable L2-projection. We present a crucial consequence of Theorem 4.3.
Corollary 4.4. L2-projection, Qj |Sj : L2 → Sj, restricted to Sj is H1-stable

on 2D and 3D locally refined meshes by red-green and red refinement procedures.
Proof. Optimality of the BPX preconditioner on the above locally refined meshes

is established in the companion article [3]. Application of Theorem 4.3 with Qj
proves the result. Alternatively, the same result can be obtained through Theorem
4.3 applied to the WHB framework. Theorem 6.2 will establish the optimality of the
WHB preconditioner for the local refinement procedures. Hence, the operator Wj

restricted to Sj is H1-stable. Since Wj is none other than Qj in the limiting case, we
can also conclude the H1-stability of the L2-projection.

Our stability result appears to be the first a priori H1-stability for the L2-
projection on these classes of locally refined meshes. H1-stability of L2-projection
is guaranteed for the subset Sj of L2(Ω), not for all of L2(Ω). This question is
currently undergoing intensive study in the finite element and approximation theory
community. The existing theoretical results, mainly in [8, 10], involve a posteriori ver-
ification of somewhat complicated mesh conditions after refinement has taken place.
If such mesh conditions are not satisfied, one has to redefine the mesh. The mesh
conditions mentioned require that the simplex sizes do not change drastically between
regions of refinement. In this context, quasiuniformity in the support of a basis func-
tion becomes crucial. This type of local quasiuniformity is usually called as patchwise
quasiuniformity. Local quasiuniformity requires neighbor generation relations as in
(5.1) and (5.2), neighbor size relations, and shape regularity of the mesh. It was
shown in [1] that patchwise quasiuniformity holds also for 3D marked tetrahedron
bisection [14] and for 2D newest vertex bisection [15, 20]. Then these are promising
refinement procedures for which H1-stability of the L2-projection can be established.

5. Red-green and red refinements. We present only the highlights of the
red-green and red refinement procedures; more detail, including a number of technical
details concerning the refinement procedures themselves, can be found in the preceding
article [3]. The two-dimensional case is quite standard, so we only describe the more
complicated three-dimensional case here. The level of a simplex τ ∈ Tj is defined as

L(τ) = min {j : τ ∈ Tj} .

Let us denote the support of basis functions corresponding to N f
j as Ωfj . For our

analysis, we will have a quasiuniform triangulation on Ωfj . One can analogously
introduce a triangulation hierarchy

T fj ≡ {τ ∈ Tj : L(τ) = j} = Tj |Ωfj .

Simplices in T fj are exposed to uniform refinement, hence T fj becomes a quasiuniform
tetrahedralization.

Red refinement as a stand-alone procedure creates new DOF by pairwise quadra-
section or octasection. The resulting hanging nodes are not closed, and therefore
cannot be DOF (see the middle mesh in Figure 5.1 where a new DOF is represented
by a small square). The initial triangulation T0 gives rise to nested, but possibly non-
conforming triangulations; see the middle mesh in Figure 5.1. A function u ∈ Sj is
determined by its values at DOF. Hanging nodes are always midpoints of edges con-
necting two DOF. The values at hanging nodes are computed by linear interpolation



12 B. AKSOYLU AND M. HOLST

Fig. 5.1. Left: Coarse DOF, N0 = 8. Middle: a DOF created by red refinement, Nred
1 = 9.

Right: Green closure deployed, Nred−green
1 = 13.

Fig. 5.2. Basis functions on meshes created by two different red refinements. Left: Two DOF
created on edge-adjacent simplices. Right: Two DOF created on non-edge-adjacent simplices.

using the corresponding DOF at the ends of edges. Although the mesh is noncon-
forming, we have conforming, well-defined basis functions which satisfy the Lagrange
property; see Figure 5.2.

A simplex in the red mesh can be expressed as a union of simplices in the cor-
responding red-green mesh. Then the red finite element space is a subspace of the
corresponding red-green finite element space. Similarly, any simplex in Tj created by
red refinement can be expressed as a union of simplices in the uniformly refined trian-
gulations T̃j . (This property is no longer valid if red refinement is supplemented with
the green refinement.) The simplex relationship gives rise to the most attractive prop-
erty of red refinement: Sj is a true subspace of S̃j . This fact is quite convenient simply
because the standard estimates such as inverse inequalities and Cauchy-Schwarz like
estimates which naturally hold for S̃j can be inherited for Sj without any additional
effort. We will exploit this fact in proving the strengthened Cauchy-Schwarz inequality
A.7.2 in the appendix.

The following generation bounds for neighbor simplices, established rigorously
in [3], will be the foundation for the approximation theory estimates. Let τ and τ ′ be
two d simplices in Tj sharing common d vertices. Then

red-green refinement : |L(τ)− L(τ ′)| ≤ 1,(5.1)
red refinement : |L(τ)− L(τ ′)| ≤ 2.(5.2)

The generation bounds (5.1) and (5.2) give rise to a L2-stable Riesz basis in the
following way [1, 3, 11]: Let the properly scaled nodal basis function be denoted as

φ̂
(j)
i = 2d/2Lj,i φ(j)

i , ûi = 2−d/2Lj,i ui, xi ∈ Nj ,

where Lj,i = min{L(τ) : τ ∈ Tj , xi ∈ τ}. Then
⋃J
j=0{φ̂

(j)
i }

Nj
i=Nj−1+1 becomes a
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L2-stable Riesz basis [3]:

‖
∑
xi∈Nj

ûiφ̂
(j)
i ‖L2(Ω) ' ‖{ûi}xi∈Nj‖l2 .(5.3)

Then (5.3) forms the sufficient condition to establish the Bernstein estimate:

ω2(u, t)p ≤ c (min{1, t2J})β‖u‖Lp , u ∈ SJ ,(5.4)

where ω2(u, t)p denotes second moduli of smoothness of u in Lp with step size t and
β > 1. The constant c is independent of u and J . This crucial property helps us to
prove Theorem 6.2.

6. Fundamental assumption, optimal preconditioner, and basis stabil-
ity. As in the BPX splitting, the main ingredient in the WHB splitting is the L2-
projection. Hence, the stability of the BPX splitting is still important in the WHB
splitting. The lower bound in the BPX norm equivalence is the fundamental assump-
tion for both the additive and multiplicative WHB methods. Namely, there exists a
constant σ independent of J satisfying:

Assumption 6.1.

J∑
j=0

22j‖(Qj −Qj−1)u‖2L2
≤ σ‖u‖2H1 , ∀u ∈ SJ .

A.6.1 was verified by the authors [1, 3] for 3D red-green and 2D/3D red refinement
procedures. Dahmen and Kunoth [11] verified A.6.1 for 2D red-green refinement
procedure. In addition, Bornemann and Yserentant [7] established A.6.1 for a different
version of 2D red refinement procedure.

Before getting to the stability result we remark that the existing perturbation
analysis of WHB is one of the primary insights in [23, 24]. Although not observed
in [23, 24], the result does not require substantial modification for locally refined
meshes. Let ej = (Wj −Qj)u be the error, then the following holds.

Lemma 6.1. Let γ be as in (3.13). There exists an absolute c satisfying:

J∑
j=0

22j‖ej‖2L2
≤ cγ2

J∑
j=0

22j‖(Qj −Qj−1)u‖2L2
, ∀u ∈ SJ .(6.1)

Proof. See Lemma 5.1 and page 119 in [23] or Lemma 1 in [24].
We arrive now at the primary result, which indicates that the WHB preconditioner

is optimal on the class of locally refined meshes under consideration.
Theorem 6.2. If there exists sufficiently small γ0 such that (3.13) is satisfied

for γ ∈ [0, γ0), then

‖u‖2WHB ≡
J∑
j=0

22j‖(Wj −Wj−1)u‖2L2
' ‖u‖2H1 , u ∈ SJ .(6.2)

Proof. Observe that

(Wj −Wj−1)u = (Wj −Qj)u− (Wj−1 −Qj−1)u+ (Qj −Qj−1)u(6.3)
= ej − ej−1 + (Qj −Qj−1)u.
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This gives

J∑
j=0

22j‖(Wj −Wj−1)u‖2L2
≤ c

J∑
j=0

22j‖(Qj −Qj−1)u‖2L2
+ c

J∑
j=0

22j‖ej‖2L2

≤ c(1 + γ2)
J∑
j=0

22j‖(Qj −Qj−1)u‖2L2
(using (6.1))

≤ c‖u‖2H1 (using A.6.1).

Let us now proceed with the upper bound. The Bernstein estimate (5.4) holds for
Sj [1, 3, 11] for all the five local refinement procedures. Hence we are going to utilize an
inequality involving the Besov norm ‖ · ‖B1

2,2
which naturally fits our framework when

the moduli of smoothness is considered in (5.4). The following important inequality
holds, provided that (5.4) holds (see page 39 in [19]):

‖u‖2B1
2,2
≤ c

J∑
j=0

22j‖u(j)‖2L2
,(6.4)

for any decomposition such that u =
∑J
j=0 u

(j), u(j) ∈ Sj , in particular for u(j) =
(Wj −Wj−1)u. Then the upper bound holds due to H1(Ω) ∼= B1

2,2(Ω).
Remark 6.1. The following equivalence is used for the upper bound in the proof

of Theorem 6.2 on uniformly refined meshes (cf. Lemma 4 in [24]).

c1‖u‖2H1 ≤ inf
u=
∑J
j=0 u

(j), u(j)∈Sj

J∑
j=0

22j‖u(j)‖2L2
≤ c1‖u‖2H1 .

Let us emphasize that the left hand side holds in the presence of the Bernstein estimate
(5.4), and the right hand side holds in the simultaneous presence of Bernstein and
Jackson estimates. However, the Jackson estimate cannot hold under local refinement
procedures (cf. counter example in section 8 in [3]). That is why we can utilize only
the left hand side of the above equivalence as in (6.4).

The WHB preconditioner optimality will be connected to Riesz basis and the
scaled WMHB will now be a H1-stable Riesz basis by Lemma 4.2 and Theorem 6.2.

Corollary 6.3. Let u be represented with respect to Φ̄(J) in (4.4). If there exists
γ ∈ [0, γ0) such that (3.13) holds, then Φ̄(J) forms an H1-stable Riesz basis:

‖u‖2Φ̄(J) ≡
NJ∑
i=1

c̄2i ' ‖u‖2H1 .

7. Optimality framework. The linear algebra setting of HB methods [6] has
a corresponding operator setting. Namely, the discretization operator A(j) : Sj → Sj
and its restriction onto Sfj , fine discretization operator A(j)

22 : Sfj → S
f
j , are defined

respectively as follows:

(A(j)ϕ,ψ) = a(ϕ,ψ), ∀ϕ,ψ ∈ Sj , (A(j)
22 ψ

f , ϕf ) = a(ψf , ϕf ), ∀ϕf , ψf ∈ Sfj .

The communication operators A(j)
12 : Sfj → Sj−1, A

(j)
21 : Sj−1 → Sfj are given by:

(A(j)
12 ϕ

f , ψc) = (ϕf , A(j)
21 ψ

c) = a(ϕf , ψc), ∀ψc ∈ Sj−1, ϕf ∈ Sfj .
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Since the decomposition Sj = Sj−1⊕Sfj in (3.2) is direct, A(j) can be represented by
a two-by-two block form:

A(j) =

[
A(j−1) A

(j)
12

A
(j)
21 A

(j)
22

]
} Sj−1

} Sfj
,(7.1)

where A(j−1), A(j)
12 , A(j)

21 , and A(j)
22 correspond to coarse-coarse, coarse-fine, fine-coarse,

and fine-fine interactions respectively. In any HB method smoothing is performed on
the fine discretization operator A(j)

22 . Hence, existence of approximations B(j)
22 , SPD

in Sfj , to the operators A(j)
22 , j = 1, . . . , J , becomes the second assumption pertaining

to the preconditioners. The reader can find the verification of this assumption in §9.1.
Assumption 7.1.

(A(j)
22 u

f , uf ) ≤ (B(j)
22 u

f , uf ) ≤ (1 + b1)(A(j)
22 u

f , uf ), ∀uf ∈ Sfj .

Next, optimality proof of the additive and multiplicative WHB methods will be
given. Optimality will be shown in the form of the following spectral equivalence.

(A(J)u, u) ≤ (B(J)u, u) ≤ Copt (A(J)u, u), ∀u ∈ SJ .(7.2)

7.1. Optimality of the additive WHB methods. The first optimality result
for WHB methods will be for the additive version.

Definition 7.1. The additive WHB method D(j) is defined for j = 1, . . . , J as

D(j) ≡
[
D(j−1) 0
0 B

(j)
22

]
,

with D(0) = A(0). Then,

(D(J)u, u) = (A(0)W0u,W0u) +
J∑
j=1

(B(j)
22 (Wj −Wj−1)u, (Wj −Wj−1)u),

where u =
∑J
j=0(Wj −Wj−1)u as in (3.7) and (3.8). Now, we have all the required

estimates at our disposal to establish the optimality of the additive WHB method for
2D/3D red-green and 2D/3D red refinement procedures for p ∈ L∞(Ω). We would
like to emphasize that our framework supports any spatial dimension d ≥ 1, provided
that the necessary geometrical abstractions are in place. Additionally, optimality of
the additive WHB method holds for a different version of 2D red refinement procedure
introduced in [7] with p ∈ C1(Ω). The optimality of the additive WHB method for
all the local refinement procedures discussed is as follows.

Theorem 7.2. If A.6.1 holds and if there exists sufficiently small γ0 such that
(3.13) is satisfied for γ ∈ (0, γ0), then A(J) is spectrally equivalent to D(J) with
Copt = c in (7.2).

Proof. By A.7.1, B(j)
22 is spectrally equivalent to A

(j)
22 . Since A

(j)
22 is a well-

conditioned matrix, using (9.4) it is spectrally equivalent to 22jI. Then, (D(J)u, u) '∑J
j=0 22j‖(Wj −Wj−1)u‖2L2

. The result follows from Theorem 6.2.
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7.2. Optimality of the multiplicative WHB methods. The standard as-
sumption for multiplicative Schwarz methods is a fundamental inequality in multi-
level finite element theory. It is known as the strengthened Cauchy-Schwarz inequal-
ity [7, 26, 28]. Bornemann and Yserentant [7] established this inequality for a variant
of 2D red refinement procedure with p ∈ C1(Ω). We extended their result to 3D red
refinement. Highlights of the proof are presented in the appendix (see §9.2).

Assumption 7.2. For δ ∈ (0, 1) and i = 1, . . . , J :

|a(u(i), u(j))|2 ≤ σδ2(j−i)22ja(u(i), u(i))‖u(j)‖2L2
, ∀u(i) ∈ Si, u(j) ∈ Sj , j ≥ i.

The motivation behind the multiplicative WHB method is the standard block-
Cholesky factorization.

Definition 7.3. The multiplicative WHB method B(j) is defined as

B(j) ≡

[
B(j−1) A

(j)
12

0 B
(j)
22

][
I 0
B

(j)−1

22 A
(j)
21 I

]
=

[
B(j−1) +A

(j)
12 B

(j)−1

22 A
(j)
21 A

(j)
12

A
(j)
21 B

(j)
22

]
.

Using the two-by-two block definition of A(j) as in (7.1), we define the error operator
E(j) as

E(j) ≡ B(j) −A(j) =

[
B(j−1) −A(j−1) +A

(j)
12 B

(j)−1

22 A
(j)
21 0

0 B
(j)
22 −A

(j)
22

]
.

To realize the action of the error operator, we decompose u ∈ Sj as u = uc + uf ,
where uc ∈ Sj−1, u

f ∈ Sfj . The action of E(j) then can be characterized as follows:

(E(j)u, u) = ((B(j)
22 −A

(j)
22 )uf , uf ) + (E(j−1)uc, uc) + (B(j)−1

22 A
(j)
21 u

c, A
(j)
21 u

c).

Our intention is to formalize the spectral equivalence of A(j) and B(j) in terms of
E(j). Next, we verify standard requirements and characterize E(j) by utilizing the
direct decomposition (3.2). By using the fact that B(j)

22 is SPD in Sfj , one can see that
the operator E(j) is positive semidefinite. In general, u(j) ∈ Sj has the decomposition

u(j) = u(j−1) + u(j)f , u(j−1) ∈ Sj−1, u
(j)f ∈ Sfj .(7.3)

Then using A.7.1 we get;

(E(j)u(j), u(j))− (E(j−1)u(j−1), u(j−1)) ≤ b1(A(j)
22 u

(j)f , u(j)f )

+(B(j)−1

22 A
(j)
21 u

(j−1), A
(j)
21 u

(j−1)).

Summing over j, with u = u(J)

(E(J)u, u) ≤ b1
J∑
j=1

(A(j)
22 u

(j)f , u(j)f ) +
J∑
j=1

(B(j)−1

22 A
(j)
21 u

(j−1), A
(j)
21 u

(j−1)).(7.4)

In order to relate the sums appearing in (7.4) to (A(J)u, u), we will employ inequalities
(7.5) and (7.6) respectively.
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J∑
j=1

(A(j)
22 u

(j)f , u(j)f ) ≤ ρ1(A(J)u, u),(7.5)

J∑
j=1

(B(j)−1

22 A
(j)
21 u

(j−1), A
(j)
21 u

(j−1)) ≤ ρ2(A(J)u, u).(7.6)

One arrives at the spectral equivalence of A(J) and B(J) operators after having
all the three assumptions in place; A.7.1, (7.5), and (7.6).

Theorem 7.4. If A.7.1, inequalities (7.5) and (7.6) hold true, then (7.2) holds
with Copt = b1ρ1 + ρ2.

Proof. The first inequality is attained by positive semidefiniteness of E(j). The
second one follows from inequalities (7.5) and (7.6).

In order to establish the spectral equivalence (7.2), we rely on the inequalities (7.5)
and (7.6). From this point on, we concentrate on verifying these inequalities for the
local refinement procedures under consideration. Moreover, the generic decomposition
(7.3) will be replaced by the decomposition of interest. Namely, we establish the
optimality of the multiplicative WHB method for the following decomposition:

u(j) = Wj−1u
(j) + (Wj −Wj−1)u(j) ≡ u(j−1) + u(j)f , u(j−1) ∈ Sj−1, u

(j)f ∈ Sfj .

Lemma 7.5. If A.6.1 holds and γ is sufficiently small in (3.13) then (7.5) holds
for some constant ρ1.

Proof. Using (6.3), we get:

‖u(j)f ‖L2 ≤ ‖(Qj −Qj−1)u‖L2 + ‖ej‖L2 + ‖ej−1‖L2 .(7.7)

J∑
j=1

(A(j)
22 u

(j)f , u(j)f ) ≤ c
J∑
j=1

22j‖u(j)f ‖2L2
(using inverse inequality for Sfj )

≤ c
J∑
j=1

22j‖(Qj −Qj−1)u‖2L2
+ c

J∑
j=1

22j‖ej‖2L2
(using (7.7))

≤ c(A(J)u, u) (using (6.1) and A.6.1)

For the quasiuniform setting, see Lemma 5.2 in [23].
Let us verify A.7.1. (9.4) indicates that A(j)

22 is well-conditioned. Thus, one may
choose a diagonal preconditioner B(j)

22 = α22jI for the matrix A
(j)
22 . Here α is a

parameter which should be adjusted so that A.7.1 is satisfied for some b1. With the
above selection of B(j)

22 , we get

J∑
j=1

(B(j)−1

22 A
(j)
21 u

(j−1), A
(j)
21 u

(j−1)) ≤ c
J∑
j=1

2−2j‖A(j)
21 u

(j−1)‖2L2
.(7.8)

The remaining link to reach to (7.6) will be provided by the following.
Lemma 7.6. If A.6.1 and A.7.2 hold, γ is sufficiently small in (3.13), then (7.6)

holds for some constant ρ2.
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Proof. Observe that the following estimate holds:

‖A(j)
21 u

(j−1)‖L2 ≤ ‖A(j)u(j−1)‖L2 .(7.9)

Now, using (7.8) and (7.9), u(j−1) = ej−1 + Qj−1u, and the inverse inequality for
Sj ⊂ S̃j respectively.

J∑
j=1

(B(j)−1

22 A
(j)
21 u

(j−1), A
(j)
21 u

(j−1)) ≤ c
J∑
j=1

2−2j‖A(j)u(j−1)‖L2

≤ c
J∑
j=1

2−2j
(
‖A(j)ej−1‖2L2

+ ‖A(j)Qj−1u‖2L2

)

≤ c
J∑
j=1

2−2(j−1)‖ej−1‖2L2
+ c

J∑
j=1

2−2j‖A(j)Qj−1u‖2L2
.

The result follows by applying (6.1) and A.6.1 to the first sum in the above estimate.
The second sum requires A.7.2 and we apply the estimate in Lemma 4.2 in [23]. For
the quasiuniform setting, see Lemma 5.3 in [23].

Finally, the optimality result follows:
Theorem 7.7. If A.6.1 and A.7.2 hold, and γ is sufficiently small in (3.13) then

(7.2) holds with Copt = c, where c depends only on b1 from A.7.1, δ from A.7.2, and
σ from A.6.1, A.7.2.

Proof. Lemma 7.5 and Lemma 7.6 establish the inequalities (7.5) and (7.6),
respectively. Then the optimality statement follows from Theorem 7.4.

8. Comparison of red refinements and suboptimal estimates. We have
seen in §7.1 that the optimality of the additive WHB method is established for each of
the four different local refinement procedures examined in §5, namely 2D and 3D red-
green, as well as 2D and 3D red refinement procedures, for p ∈ L∞(Ω) and in general,
extension of this class of refinement procedures to any spatial dimension d ≥ 1. In
addition, the optimality holds for the 2D red refinement introduced by Bornemann
and Yserentant [7] with p ∈ C1(Ω). However, for the optimality of the multiplicative
WHB method the main theoretical challenge is to establish A.7.2. For this reason, we
concentrate on proving optimality for the following three red refinement procedures;
2D and 3D ones as in §5, and the 2D one as in [7].

Let us elaborate on the two different 2D red refinement procedures. The one
in [7] enforces the difference of levels of two simplices to be at most 1 if they have
at least one common node. This brings a patchwise uniform refinement flavor and
is closer to uniform refinement than the type of red refinement in §5. There is an
advantage of this type of refinement: All the subsimplices of a subdivided simplex
can be marked for further refinement. In our refinement, this holds only for a subset
of the subsimplices. On the other hand, one can introduce DOF inside a given patch
without uniformly refining the whole patch. This flexible behavior is exhibited in
Figure 5.2. Our 2D red refinement guarantees the BPX optimality for p ∈ L∞(Ω). In
addition, this framework supports an easy extension to any spatial dimension d ≥ 1.
The BPX optimality presented in [7] is restricted to p ∈ C1(Ω) with d = 2.

In §5, we mentioned that any red refinement procedure is attractive because
Sj is a subspace of S̃j . Aside from this fact, 2D red refinement provides the right
framework for the proof of the strengthened Cauchy-Schwarz inequality which forms
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the challenging assumption A.7.2 (see Lemma 9.4). In particular, a boundary strip S
of the triangle τ is utilized to allow the decomposition

w = wbdry + wintr,(8.1)

where wbdry live on S and wintr live in the interior (complement of S). One has to
make sure that S is nonempty to utilize (8.1). The resulting strip is contained by
the strip S̃ arising in the uniformly refined case (i.e. S ⊂ S̃). The proof technique
aims to obtain a ratio with δ ∈ (0, 1) such that area(S)

area(τ) ≤
area(S̃)
area(τ) ≤ c δ2(j−i). This

subtle property cannot be satisfied by red-green refinement. An other difficulty arises
in the proof of A.7.2 when p 6∈ C1(Ω) (see §9.2). Without assuming A.7.2, B(J)

is suboptimally spectral equivalent to A(J) as in Theorem 8.2. One can derive the
following suboptimal estimate.

Lemma 8.1. If A.6.1 holds, then there exists c such that

J∑
j=1

2−2j‖A(j)
21 u

(j−1)‖2L2
≤ c J(A(J)u, u), ∀u ∈ SJ .

Proof.

2−2j‖A(j)
21 u

(j−1)‖2L2
≤ 2−2j‖A(j)u(j−1)‖2L2

(using (7.9))

= 2−2ja(A(j)u(j−1), u(j−1))
' a(u(j−1), u(j−1)) (largest eigenvalues of A(j) ∼ 22j)
' ‖u(j−1)‖2H1 ≡ ‖Wj−1u‖2H1

≤ c‖u‖2H1

Optimality of the WHB preconditioner (i.e. decomposition generated by using Wj) is
guaranteed by Theorem 6.2. Hence, one obtains the last inequality by the H1-stability
of Wj−1 provided by Theorem 4.3. This leads to suboptimal estimate. For uniform
refinement setting, see Lemma 4.4 in [23].

For multiplicative methods, in the absence of A.7.2 one uses the H1-stability of
the linear operator employed. So, H1-stability of Wj plays a crucial role in Lemma
8.1. This explains why we have dedicated §4.1 for stability results in H1. Finally, we
report the suboptimal norm equivalence results.

Theorem 8.2. If A.6.1 holds, then (7.2) holds with Copt = c(1 + J), where c
depends only on b1 from A.7.1, δ from A.7.2, and σ from A.6.1, and the H1-norm of
the linear operator Wj for j = 0, . . . , J .

Proof. Lemma 7.5 implies inequality (7.5). Lemma 8.1 establishes the suboptimal
inequality (7.6). Then the suboptimal spectral equivalence follows from Theorem 7.4.

Griebel and Oswald [12] gave an improved suboptimal result for quasiuniform
settings where (7.2) holds with Copt = c(1 + log2(1 + J)).

9. Appendix.

9.1. Well-conditioned A
(j)
22 . The lemma below is essential to extend the exist-

ing results for quasiuniform meshes (cf. Lemma 6.1 in [23] or Lemma 2 in [24]) to the
locally refined ones. S(f)

j = (Ij − Ij−1)Sj denotes the HB slice space.
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Lemma 9.1. Let Tj be constructed by the local refinements under consideration.
Let Sfj = (I − πj−1)S(f)

j be the modified hierarchical subspace where πj−1 is any
L2-bounded operator. Then, there are constants c1 and c2 independent of j such that

c1‖φf‖2X ≤ ‖ψf‖2X ≤ c2‖φf‖2X , X = H1, L2,(9.1)

holds for any ψf = (I − πj−1)φf ∈ Sfj with φf ∈ S(f)
j .

Proof. The Cauchy-Schwarz like inequality [5] is central to the proof: There exists
δ ∈ (0, 1) independent of the mesh size or level j such that

(1− δ2)(∇φf ,∇φf ) ≤ (∇(φc + φf ),∇(φc + φf )), ∀φc ∈ Sj−1, φ
f ∈ S(f)

j .(9.2)

(1− δ2)‖φf‖2L2
≤ c|φc + φf |2H1 (by Poincare inequality and (9.2)).(9.3)

Combining (9.2) and (9.3): (1− δ2)‖φf‖2H1 ≤ ‖φc + φf‖2H1 . Choosing φc = −πj−1φ
f ,

we get the lower bound: (1− δ2)‖φf‖2H1 ≤ ‖ψf‖2H1 . To derive the upper bound:
• Red-green refinement: The inverse inequality holds for Sfj because of the qua-

siuniformity of T fj . The right scaling is obtained by father-son size relation.
• Red refinement: By Sfj ⊂ Sj ⊂ S̃j , the local inverse inequality (9.5) holds.

Using the inverse inequalities and L2-boundedness of πj−1, one gets

‖ψf‖2H1 ≤ c022j‖ψf‖2L2
≤ c022j (1 + ‖πj−1‖L2)2 ‖φf‖2L2

≤ c22j‖φf‖2L2
.

The slice space S(f)
j is oscillatory. Then there exists c such that ‖φf‖2L2

≤ c2−2j‖φf‖2H1 .

Hence, ‖ψf‖2H1 ≤ c‖φf‖2H1 . The case for X = L2 can be established similarly.
Using the above tools, one can establish that A(j)

22 is well-conditioned. Namely,

c122j ≤ λfj,min ≤ λ
f
j,max ≤ c222j ,(9.4)

where λfj,min and λfj,max are the smallest and largest eigenvalues of A(j)
22 , and c1 are

and c2 both independent of j. For details see Lemma 4.3 in [23] or Lemma 3 in [24].

9.2. The strengthened Cauchy-Schwarz inequality. A.7.2 will be verified
for uniform refinement. Following the exposition in [7], we extend the results to 3
spatial dimensions. We report some necessary technical lemmas and proof highlights.

Lemma 9.2. Let u ∈ S̃j. The inverse inequality holds for τ ∈ T̃j:

|u|2H1(τ) ≤ c022j‖u‖2L2(τ),(9.5)

where c0 depends only on the shape regularity of T0.
As mentioned before, a boundary strip will be employed to prove A.7.2. This

requires a cut-off operation of the functions u ∈ Sj . The next lemma quantifies the
L2-norm of u under this operation for a general setting where d ≥ 2.

Lemma 9.3. Let τ be a d simplex which is a subset of a simplex in T0. Let ū be a
linear function taking the same values as u at most d− 1 vertices of τ and the value
0 at the remaining vertices of τ . Then the following sharp bound holds:

‖ū‖2L2(τ) ≤
d+ 1

2
‖u‖2L2(τ).(9.6)
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Proof. Define F (x1, . . . , xd+1) = w2
1 + . . . + w2

d+1 + (w1 + . . . + wd+1)2, where
w(xi) = wi and xi is a vertex of τ for i = 1, . . . , d + 1. Noting that ‖w‖2L2(τ) =
volume(τ)

(d+1)(d+2) (
∑d+1
i=1 w(xi)2 + [

∑d+1
i=1 w(xi)]2), equivalently we establish the following:

F (x1, . . . , xd, 0) ≤ d+ 1
2

F (x1, . . . , , xd, xd+1), ∀x1, . . . , xd+1.

Assume there exist x1, . . . , xd+1 such that F (x1, . . . , xd, 0) > d+1
2 F (x1, . . . , , xd, xd+1).

Then the following equivalent expression leads to a contradiction.

0 >
d− 1

2
(w2

1 + . . .+w2
d) +

d− 3
4

(w1 + . . .+wd)2 + (d+ 1)[wd+1 + (w1 + . . .+wd)/2]2.

For the sharp bound, observe that F (x1, . . . , x1, 0) = d+1
2 F (x1, . . . , x1,−x1), x1 6= 0.

Lemma 9.4. The strengthened Cauchy-Schwarz inequality holds for all τ ∈ T̃i, v ∈
S̃i, w ∈ S̃j , j > i:

D(v, w)|τ ≤ c
(

1√
2

)j−i
|v|H1(τ) 2j‖w‖L2(τ),(9.7)

where c is a constant depending only on the shape regularity.
Proof. We skip the details of the proof since they closely follow the 2D case

in [7]. The major difference is the volume argument, where S denotes the strip in τ :
volume(S)
volume(τ) = 1 −

(
1− 3( 1

2 )j−i
)3 ≤ 36

(
1
2

)j−i
. Using the previous lemmas, the result

holds with c = 6
√

2
√
c0.

Lemma 9.4 extends to A.7.2 in the following fashion. Summing over τ ∈ T̃i
extends the local estimate (9.7) to the below global estimate:

D(v, w) ≤ c
(

1√
2

)(j−i)

|v|H1(Ω) 2j‖w‖L2(Ω) ∀v ∈ S̃i,∀w ∈ S̃j , j > i(9.8)

Consequently, the global estimate (9.8) holds for v ∈ Si, w ∈ Sj , j > i, because
Si ⊂ S̃i, Sj ⊂ S̃j . A subtle requirement arises when (9.8) is generalized to

a(v, w) ≤ c
(

1√
2

)(j−i)

a(v, v) 2j‖w‖L2(Ω) ∀v ∈ S̃i,∀w ∈ S̃j , j > i.

The coefficient matrix p must be C1(Ω) because of integration by parts. This is the
main difficulty in extending the proof technology to p ∈ L∞(Ω).
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